1楼:发了疯的大榴莲
证明:做变量替换a+b-x=t,则dx=-dt,当x=b,t=a,当x=a,t=b
于是∫(a,b)f(a+b-x)dx
=-∫(b,a)f(t)dt
= ∫(a,b)f(t)dt
=∫(a,b)f(x)dx
即∫(a,b)f(x)dx=∫(a,b)f(a+b-x)dx
2楼:匿名用户
^因为积分区域d关于直线y=x对称,所以二重积分满足轮换对称性,即∫∫(d) e^[f(x)-f(y)]dxdy=∫∫(d) e^[f(y)-f(x)]dxdy
=(1/2)*
=(1/2)*∫∫(d) dxdy
>=(1/2)*∫∫(d) 2*√dxdy=∫∫(d) dxdy
=(b-a)^2
设f''(x)在区间[a,b]上连续,证明:∫(b→a)f(x)dx
3楼:快播电影**
证明:做变量替换a+b-x=t,则dx=-dt,当x=b,t=a,当x=a,t=b 于是 ∫(a,b)f(a+b-x)dx =-∫(b,a)f(t)dt= ∫(a,b)f(t)dt=∫(a,b)f(x)dx 即∫(a,b)f(x)dx=∫(a,b)f(a+b-x)dx 命题得证。 【注:
紧跟积分符号后面的为积分区间】
设函数f(x)在区间[a,b]上连续,且f(a)b。证明存在ξ∈(a,b),使得f(ξ)=ξ
4楼:
令g(x)=f(x)-x,由题意知g(x)连续g(a)=f(a)-a<0,g(b)=f(b)-b>0∴g(a)g(b)<0
∴根据零点定理可以知道存在ξ∈(a,b),使得g(ξ)=0,即 f(ξ)-ξ =0,得证。
零点定理:
设函数f(x)在[a,b]上连续,且f(a)f(b)<0,则存在ξ∈(a,b),使得f(ξ)=ξ
5楼:匿名用户
证明:记f(x)=f(x)-x,显然它在[a,b]上连续且f(a)=f(a)-a<0,f(b)=f(b)-b>0由连续函数介值定理知存在ξ∈(a,b),使得f(ξ)=f(ξ)-ξ=0
即存在ξ∈(a,b),使得f(ξ)=ξ,命题得证。
6楼:匿名用户
高等数学,课本上好像有证明过程,以前证过,现在忘了!不好意思!
设函数f(x)在[a,b]上连续,∫[a,b]f(x)dx=∫ [a,b]xf(x)dx=0
7楼:匿名用户
只需考虑f是非零函数的情况即可。首先,f在(a b)上必有变号点,否则f恒大于0或恒小于0,积分为0意味着f恒等于0,矛盾。其次,若f在(a b)上只有一个变号点x0,考虑g(x)=(x-x0)f(x),则g(x)不变号,且g(x)=xf(x)-x0*f(x)的积分值为0,于是g(x)恒等于0,矛盾。
设函数f(x)在区间[a,b]上连续,且在(a,b)内有f′(x)>0,证明:在(a,b)内存在唯一的ξ,使曲
8楼:力顶涙
∵s1=∫ξa
[f(ξ)?f(x)]dx=(ξ?a)f(ξ)?∫ξaf(x)dx,
s2=∫bξ
[f(x)?f(ξ)]dx=∫bξ
f(x)dx?(b?ξ)f(ξ)
∴由s1=3s2得:
(ξ?a)f(ξ)?∫ξa
f(x)dx=3∫bξ
f(x)dx?3(b?ξ)f(ξ)…①
下证方程①在ξ∈(a,b)有唯一解
首先证明解的存在性,其次证明解的唯一性
设f(ξ)=(ξ?a)f(ξ)?∫ξa
f(x)dx?3∫bξ
f(x)dx+3(b?ξ)f(ξ),则
f(ξ)在[a,b]连续,在(a,b)可导,且f(a)=3(b?a)f(a)?3∫ba
f(x)dx
f(b)=(b?a)f(b)?∫ba
f(x)dx
由定积分的几何意义,很明显可以看出:
f(a)<0,f(b)>0
∴由零点定理知,在(a,b)至少存在一点ξ,使得f(ξ)=0即:在(a,b)至少存在一点ξ,使得s1=3s2又∵f′(ξ)=(ξ-a)f'(ξ)+f(ξ)-f(ξ)+3f(ξ)-3f(ξ)+3(b-ξ)f'(ξ)=(3b-a-2ξ)f'(ξ)
而ξ∈(a,b)
∴3b-a-2ξ>0
∴f′(ξ)>0
∴f(ξ)在(a,b)单调递增
∴f(ξ)在(a,b)只有唯一解
故:?唯一ξ∈(a,b),使得s1=3s2命题得证.
9楼:古赩冯三诗
期待看到有用的回答!
大一高等数学 设f(x)在[a,b]上连续,证明:∫baf(x)dx=∫baf(a+b-x)dx
10楼:匿名用户
令a+b-x=u,则x=a时u=b,x=b时u=a,dx=-du(这个过程中a,b均为参数)
则原积分化为—∫ab f(u)du=∫ba f(u)du,得证
这类题目都是对积分变量进行适当变换即可证明
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在...
11楼:匿名用户
∫(a,b)f(x)dx=f(b)-f(b)因此∫(a,b)f(x)dx=f(b)(b-a)<=>[f(b)-f(a)]/(b-a)=f(b)
由拉克朗日定理,存在ξ使:
[f(b)-f(a)]/(b-a)=f(ξ)ξ∈(a,b)
b>ξ>a
=>f(ξ)=f(b)
由l罗尔定理,存在ζ∈(ξ,b)使
f′(ζ)=0
ζ∈(ξ,b)=>ζ∈(a,b)因为ζ>ξ【改】
∫(a,b)f(x)dx=f(b)(b-a).
由积分中值定理
∫(a,b)f(x)dx=f(β)(b-a).
β∈(a,b)
所以f(β)=f(b)
由罗尔定理
f′(α)=0 α属于(β,b)也就属于(a,b)
希望能让您满意!
设函数f(x)在区间a,b上连续,证明
12楼:匿名用户
^因为积分区域d关于直线y=x对称,所以二重积分满足轮换对称性,即∫∫(d) e^[f(x)-f(y)]dxdy=∫∫(d) e^[f(y)-f(x)]dxdy
=(1/2)*
=(1/2)*∫∫(d) dxdy
>=(1/2)*∫∫(d) 2*√dxdy=∫∫(d) dxdy
=(b-a)^2
设f(x)为已知连续函数,I t st0f(tx)dx,其中
1楼 御妹 令 tx y, 则 x y t,dx dyt, 所以 i t st 0f tx dx s0 f y dy, 从而 i依赖于s,不依赖于t和x, 故选 d 设f x 为已知连续函数,i t st0f tx dx,其中s 0,t 0,则i的值 a 依赖于s tb 依赖于s 2楼 手机用户 i...
如图,f(x)的导函数f(x)在x 0处为何不连续。谢谢
1楼 匿名用户 直接用定义取0处的导数。limx 0 f x 0 x 0 limx 0 xsin 1 x 0 而当x不等于0时,链式法则直接微分得导数为2xsin 1 x cos 1 x 因此,f x 2xsin 1 x cos 1 x x不等于0时 0 x等于0时。 你观察一下,当x趋向于0时,c...
函数f(x)1(x+1)(x-2)的连续区间是
1楼 潇湘 夜雨 函数的间断点是x 2和x 1 所以连续区间为 无限, 1 , 1,2 , 2, 无限 。 2楼 匿名用户 lim x 无穷 f x 0 x不等于 1和2 和f x 0 x等于 1和2 分断函数连续区r 函数f x 1 x 4 x 2 的连续区间为 3楼 孤独的狼 连续区间 2 u ...