1楼:善言而不辩
^^e^xy+x·y=1,两边
对x求导
e^xy·(y+xy')+2xy+xy'=0y'(xe^xy+x)=-ye^xy-2xyy'=-(ye^xy+2xy)/(xe^xy+x)
求由方程e^xy+x^2*y-1=0确定的隐函数,y=f(x)的导数dy/dx 急!!
2楼:牛牛独孤求败
e^xy+x^2*y-1=0,两边微分,得:
e^xy*(ydx+xdy)+2xydx+x^2dy=0,
——》dy/dx=-(y*e^xy+2xy)/(x*e^xy+x^2)。
3楼:幸运的活雷锋
dy/dx*(1+xe^y)+e^y=0
求由方程xy=e^x+y所确定的隐函数y=y(x)的导数
4楼:匿名用户
xy=e^(x+y)
两边求导:
y + xy ′ = e^(x+y) * (1+y ′)y + xy ′ = e^(x+y) + e^(x+y) * y ′xy ′ - e^(x+y) * y ′ = e^(x+y) - yy ′ = /
******************************===xy=e^x+y
两边求导:
y + xy ′ = e^x + y ′
xy ′ - y ′ = e^x - y
y ′ = ( e^x - y ) / (x-1)
5楼:马依真梓菱
两边对x求导:
y+xy'=e^(x+y)*(1+y')
解得;y'=[e^(x+y)-y]/[x-e^(x+y)]
设y=y(x)是由方程e^y+xy=1的隐函数 求dy/dx 求过程
6楼:
两边对x求导,将y看成是x的复合函数:
y'e^y+y+xy'=0
得y'(e^y+x)=-y
y'=-y/(e^y+x)
求方程xy=e^(x+y)确定的隐函数y的导数
7楼:匿名用户
隐函数求导如下:
方程两边求导:
y+xy'=e^(x+y)(1+y')
y+xy'=e^(x+y)+y'e^(x+y)y'[x-e^(x+y)]=e^(x+y)-yy'=[e^(x+y)-y]/[x-e^(x+y)].
8楼:束迈巴冰菱
隐函数求导,两边同时
求导,此题是对x求导!!!
两边同时求导:
y+xy'=e^x-y'
y'=(e^x-y)/(x+1)
由xy=e^x-y解出y
y=e^x/x+1,带入上式
y'=(e^x-y)/(x+1)
=[e^x-(e^x/x+1)]/(x+1)=xe^x/[(x+1)^2]
当你解出y的关系式时,就已经能求导了,隐函数求导玩的是技巧,代入。。。。
两边求导(连乘或指数时同时取对数,一般自然对数,再两边同时对x求导,会出现y,
y'写成y'
表达式(右边会出现y)
再从原式中解出y,代入,整理即可
,希望采纳......
x+xy-e^y=0求隐函数并求出一介导数
9楼:匿名用户
x+xy-e^y=0
2x+y+xy'-e^yy'=0
y'(x-e^y)=-(2x+y)
y'=-(2x+y)/(x-e^y)
方程xy=e^(x+y)确定的隐函数y的导数是多少?
10楼:demon陌
方程xy=e^(x+y)确定的隐函数y的导数:y'=[e^(x+y)-y]/[x-e^(x+y)]
解题过程:
方程两边求导:
y+xy'=e^(x+y)(1+y')
y+xy'=e^(x+y)+y'e^(x+y)y'[x-e^(x+y)]=e^(x+y)-y得出最终结果为:y'=[e^(x+y)-y]/[x-e^(x+y)]如果方程f(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。而函数就是指:
在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。关系用y=f(x)即显函数来表示。
11楼:玉麒麟大魔王
方程这个确定隐函数导数是什么?找一大学教授为您解答。
求由方程e^y+xy-e=0所确定的隐函数的导数dy/dx. 要详细过程,说明为什么要那样求,不够详细不给分!
12楼:demon陌
由方程e^y+xy-e=0确定的函数是y=f(x),因此在对方程两边对于x求导时,要把y看成是x的函数,这样就可以得到e^y*y'+y+xy'=0
从而得到y'=-y/(e^y+x)
注:y'=dy/dx
如果方程f(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。而函数就是指:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。
这种关系一般用y=f(x)即显函数来表示。f(x,y)=0即隐函数是相对于显函数来说的。
13楼:我是一个麻瓜啊
解题过程如下:
由方程e^y+xy-e=0确定的函数是y=f(x),因此在对方程两边对于x求导时,要把y看成是x的函数,这样就可以得到e^y*y'+y+xy'=0
从而得到y'=-y/(e^y+x)
注:y'=dy/dx
扩展资料:隐函数导数的求解一般可以采用以下方法:
方法1:先把隐函数转化成显函数,再利用显函数求导的方法求导;
方法2:隐函数左右两边对x求导(但要注意把y看作x的函数);
方法3:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
方法4:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
例题:1、求由方程y=2px所确定的隐函数y=f(x)的导数。
解: 将方程两边同时对x求导,得:
2yy'=2p
解出y'即得
y'=p/y
2、求由方程y=x ln y所确定的隐函数y=f(x)的导数。
解:将方程两边同时对x求导,得
y’=ln y+xy' /y
解出y'即得 。
14楼:天使和海洋
求导定义:函数y=f(x)的导数的原始定义为
y'=f'(x)=lim(δ
x→0)|(δy/δx)=lim(δx→0)|δy/lim(δx→0)|δx=dy/dx,
其中δy=f(x+δx)-f(x);
实数c的导数(c)'=0
导数的四则运算法则:u=u(x),v=v(x);
加减法原则:(u±v)'=u'±v'
证明:(u±v)'=lim(δx→0)|(δ(u±v)/δx)=d(u±v)/dx,
其中δ(u±v)=u(x+δx)±v(x+δx)-u(x)±v(x)
=[u(x+δx)-u(x)]±[v(x+δx)-v(x)]
=δu±δv,
则(u±v)'=lim(δx→0)|(δ(u±v)/δx)
=lim(δx→0)|(δu/δx)±lim(δx→0)|(δv/δx)
=(du/dx)±(dv/dx)
=u'±v'
乘法法则(uv)'=u'v+uv'
证明:则(uv)'=lim(δx→0)|(δ(uv)/δx)=d(uv)/dx,
其中δ(uv)=u(x+δx)v(x+δx)-u(x)v(x)
=[u(x+δx)v(x+δx)-u(x)v(x+δx)]+[u(x)v(x+δx)-u(x)v(x)]
=[u(x+δx)-u(x)]v(x+δx)]+u(x)[v(x+δx)-v(x)]
=δu×v(x+δx)]+u(x)×δv
则(uv)'=lim(δx→0)|[(δu×v(x+δx)]+u(x)×δv)/δx]
=lim(δx→0)|[δu×v(x+δx)/δx]+lim(δx→0)|[u(x)×δv/δx]
=lim(δx→0)|[δu×v(x+δx)/δx]×lim(δx→0)|v(x+δx)+lim(δx→0)|u(x)×lim(δx→0)|[u(x)δv/δx]
=(du/dx)vx+u(x)(dv/dx)
=u'(x)v(x)+u(x)v'(x)
除法法则:(u/v)'=(u'v-uv')/v
证明:与乘法法则的证法类似,此处略!
复合函数的求导法则:y=f(u)=f(u(x)),u=u(x),则y'=f'(u(x))×u'(x)
简证:y=f(u)=f(u(x)),u=u(x),
则y'=lim(δx→0)|(δy/δx)
=lim(δx→0)|[(δy/δu)×(δu/δx)]
=lim(δx→0)|(δy/δu)×lim(δx→0)|(δu/δx)
=(dy/du)×(du/dx)
=f'(u(x))×u'(x)
e^y+xy-e=0——原隐函数,其中y=f(x)
两边求导得(e^y+xy-e)'=0'
左边先由求导的加减法原则可知(e^y+xy-e)'=(e^y)'+(xy)'-(e)',
由常数的导数为0可知原隐函数两边求导后为:(e^y)'+(xy)'=0
由复合函数的导数可知(e^y)'=e^y×y',其中(e^x)'=e^x;
由求导的乘法法则可知(xy)'=y+xy',
即原隐函数的导数为e^y×y'+y+xy'=0(其中y'=dy/dx)
接下来求函数y的过程就是传说中的求解微分方程,
这个求解通常都比较难,而且往往是非常难!
15楼:匿名用户
很简单啊。
隐函数为f(x,y)=e^y+xy-e
这个隐函数的求导有个公式dy/dx=f(x,y)对x的偏导除以f(x,y)对y的偏导,并加上一个负号。(不会打偏导负号,见谅)即:dy/dx=-fx/fy
dy/dx=--y/(e^y+x)
16楼:匿名用户
^设 y= f(x)
方程 :
e^(f(x))+xf(x)-e=0
在方程的两边对x求导数
e^(f(x)) f '(x)+f(x)+xf '(x)=0 .........①
解出:f ' (x)= -f(x)/[x+e^(f(x))]即 y ' = -y/(x+e^y)...........②这说明:
在.①中把f(x),换成 y ,就是把y 看成 x 的函数来 求导;有
e^y * y'+ y+ xy'=0
17楼:匿名用户
把方程的两边对x求导数
e^y·(dy/dx)+y+x·(dy/dx)=0从而dy/dx=-y/(x+e^y)
希望你能理解
18楼:匿名用户
看看,你觉得够详细吗?我认为不能在详细了!
19楼:数学天才
解:由e^y+xy-e=0得e^y+xy=e
等式两边取导得e^y*(dy/dx)+y+x(dy/dx).
整理得dy/dx=-y/(e^y+y)
20楼:沉默
对方程两边e^y+xy-e=0求导
得e^ydy+xdy+ydx=0(其中dxy=xdy+ydx)
所以dy/dx=-y/(e^y+x)
21楼:使命召唤
由隐函数的求导法则可知,
dy/dx.e^y+y+xdy/dx=0
dy/dx= -y/(x+e^y)
22楼:匿名用户
一种用偏导.一种把y看成x的函数...老师应该会讲用2这种方法求解的...
已知隐函数y y(x)由方程xy 1-e y确定,求y"
1楼 自由自在 已知隐函数 y y x 由方程xy 1 e y确定,求y将等式两边对x求导数得 y xy e y y 则 y y e y x y 0 y e y 设y y x 是由方程e y xy 1所确定的隐函数,求dy dx 2楼 宇文仙 e y xy 1 两边同时对x求导得 e y y y x...
求方程xy-e x+e y 0所确定隐函数的导数y的导数
1楼 南霸天 先对x求导 y xy e x e y y 0 y e x y x e y 求由方程xy e x e y 0所确定的隐函数y y x 的导数 2楼 唐宋 先对x求导 y xy e x e y y 0 y e x y x e y 求由方程xy e x e y 0所确定的隐函数y y x 的...
设y y(x)是由方程e y+xy e所确定的隐函数,求y n(0)
1楼 追思无止境 令x 0,代入方程e y xy e得e y 0 0 y 0 e,化简为e y 0 e 所以y 0 1 因此y n 0 1 求由方程xy e x y所确定的隐函数y y x 的导数 2楼 匿名用户 xy e x y 两边求导 y xy e x y 1 y y xy e x y e x...