已知:x 2-x-2 0,求(1):x+x分之2(2)x

2020-11-26 17:01:48 字数 3974 阅读 1520

1楼:哎呀帅的被人砍

^嗯。x^2-x-2=0 解得,x=2,x=-1(1):x+x分之2

代入原式,x=2,x=-1

原式=3 或 -3

(2)x^2-x^2分之4的值

代入x=2,x=-1,即x=4 或x=1原式=3 或者 -3

很高兴为您解答,祝你学习进步!【高中生全科解答】团队为您答题。有不明白的可以追问!

如果您认可我的回答。请点击下面的【选为满意回答】按钮。如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢!

已知x^2-x-1=0,求(1)x的值;(2)x^5分之x^4+2x^2-1的值

2楼:匿名用户

^^配方

x-x=1

x-x+1/4=5/4

(x-1/2)=(±√5/2)

x-1/2=±√5/2

x=1/2±√5/2

x=(1-√5)/2,x=(1+√5)/2x^5分之x^4+2x^2-1

=x^5分之x^4+x^2+x

=x^4分之x^3+x+1

=x^4分之x^3+x+x^2+-x

=x^2分之x+1=1

已知分式方程2/(x-1)-(a+1)/(x+2)=3a/(x^2+x-2)只有整数解,求整数a的值

3楼:匿名用户

去分母得:2(x+2)-(a+1)(x-1)=3a整理得(1-a)x=2a-5

解得x=2a-5/1-a

分式方程只有整数解,

所以x≠1且x≠-2

a=0或a=-2

4楼:匿名用户

解:去分母得

2x+4-(a+1)x+(a+1)=3a

(1-a)x=2a-5

x=-2-3/(1-a)

∵只有整数解

∴1-a是3的约数

1-a=-3、-1、1、3

∴a=4、2、0、-2

对应x=-1、1、-5、-3

∵分母x+x-2≠0

∴x=-1、-5、-3

∴a=4、0、-2

5楼:匿名用户

您好! 2/(x-1)-(a 1)/(x 2)=((3 a)x-a 3)/(x 2)(x-1)=3a/(x 2)(x-1) 进一步化简,x=(4a-3)/(3 a)=4-(15/(3 a)),要使其能取整,a=-2,-6,-8,-18,2,12。望采纳,谢谢!

已知x^2-3x+1=0求x-x分之1

6楼:代斐劳彭丹

x^2+3x-1=0,两边同除x,得x+3-1/x=0 ,即x-1/x=-3

两边平方,得x^2-2+1/x^2=9,两边加4,得x^2+2+1/x^2=13

即(x+1/x)^2=13

所以x+1/x=±√13

已知f(x)=x^2/(1-x^2),求f(0)的n阶导数~~多谢啦~~~~~~

7楼:匿名用户

用莱布尼茨公式:y(n) (即y的n阶导数)=(uv)(n) (u和v是x的函数)

n=∑ cin u(n-i)v(i)(就是二项式定理中的次数换成导数阶数)

i=0这里cin 即n!/(n-i)!*i!

公式好难打。。。

这里u=x^2 v=1/(1-x^2) 代入就行了[ps:可能有更简单的方法,(比如你试着求它的一阶导数,二阶导数……再找规律,也许也能做出来)但是本人想不出来了,因为我没有系统学过微积分,完全是自学的(我才12岁啊)。]

就是这样了,希望能帮到你

已知x(x-1)-(x^2-y)+2=0,求代数式2分之x^2+y^2再减去xy的值

8楼:乱答一气

x(x-1)-(x^2-y)+2=0,

开展得x^2-x-x^2+y+2=0

y-x+2=0

y-x=-2

2分之x^2+y^2再减去xy

=1/2(x-y)^2

=1/2*4=2

f(x)=xe^(-x^2)(x>=0),计算∫(4,1)f(x-2)dx

9楼:巴山蜀水

令x-2=t。∴∫(1,4)f(x-2)dx=∫(-1,2)f(t)dt=∫(-1,0)f(t)dt+∫(0,2)f(t)dt。

∴∫(1,4)f(x-2)dx=∫(-1,0)dx/(1+cosx)+∫(0,2)xe^(-x)dx。

而,∫(-1,0)dx/(1+cosx)=∫(-1,0)dx/[2cos(x/2)=tan(x/2)丨(x=-1,0)=tan(1/2),∫(0,2)xe^(-x)dx=(-1/2)e^(-x)丨(x=0,2)=[1-e^(-4)]/2。

∴原式=tan(1/2)+[1-e^(-4)]/2。

供参考。

10楼:匿名用户

^令 u = x-2

i = ∫<下

1,上4>f(x-2)dx = ∫《下-1,上2>f(u)du= ∫《下-1,上0>du/(1+cosu) + ∫《下0,上2>ue^(-u)du

= ∫《下-1,上0>d(u/2)/[cos(u/2)]^2 - (1/2)∫《下0,上2>e^(-u)d(-u^2)

= [tan(u/2)]《下-1,上0> - (1/2)[e^(-u^2)]《下0,上2>

= arctan(1/2) + (1/2)(1 - 1/e^4)

11楼:匿名用户

^(1)、

已知x的概率密度为f(x)=(α^2)xe^(-αx),x>0;

0,(其它)

故参数α的矩估计量

=e(x)

= ∫ (上限+∞,下限0) x * f(x) dx

= ∫ (上限+∞,下限0) x^2 * α^2 * e^(-αx) dx

而由分部积分法可以得到,

∫ x^2 * α^2 * e^(-αx) dx

= -αx^2 * e^(-αx) + ∫ 2αx * e^(-αx) dx

= -αx^2 * e^(-αx) - 2x * e^(-αx) + ∫ 2e^(-αx)dx

= -αx^2 * e^(-αx) - 2x * e^(-αx) - 2/a * e^(-αx) +c(c为常数)

故e(x)

= ∫ (上限+∞,下限0) x^2 * α^2 * e^(-αx) dx

= [ -αx^2 * e^(-αx) - 2x * e^(-αx) - 2/a * e^(-αx) ] 上限+∞,下限0

显然在x趋于+∞时,e^(-αx) 趋于0,

故e(x)= 2/α = (在这里表示x1,x2,…xn的平均值)

即参数α的矩估计量为2/

(2)、

构造似然函数

l(x1,x2,…xn,α)=f(x1,α) * f(x2,α) *(fx3,α)*…*f(xn,α)

=(α^2)*x1*e^(-αx1) * (α^2)*x2*e^(-αx2) * …(α^2)*xn*e^(-αxn)

对等式两边同时取对数,

得到lnl= (2lnα+lnx1 -αx1) + (2lnα+lnx2 -αx2) +…+(2lnα+lnxn -αxn)

=2n*lna +ln(x1*x2*…*xn) - α(x1+x2+…+xn)

用lnl 对α求导,

得到(d lnl) /dα =2n/α - (x1+x2+…+xn)

令(d lnl) /dα =0,

即得到2n/α - (x1+x2+…+xn)=0,

即α = 2n / (x1+x2+…+xn)

= 2 / [(x1+x2+…+xn)/n]

= 2 / (在这里表示x1,x2,…xn的平均值)

故参数α的最大似然估计量为 2 /

已知函数f(x)2x2-3x+1,g(x)Asin(x

1楼 隐没闟 1 y f sinx 2sin2x 3sinx 1,设t sinx,x 0, 2 ,则0 t 1 y 2 t 32 t 1 2 t 34 18, 当t 0时,y取得最大值ymax 1 6分 2 方程2sin2x 3sinx 1 a sinx化为2sin2x 2sinx 1 a, 该方程...

等式(2x-1)2019 a0+a1x+a2x

1楼 何时能不悔 选b由二项式定理得 an 2014 2 n 2014 n n 1 4030 2015 2 n 1 2015 n 1 n 。 所以an n 1 1 4030 2015 2 n 1 2015 n 1 n 1 1 4030 c 2015,n 1 2 n 1 。 也就是 1 4030 1 ...

(1)若x+1 x 3,求x 2(x 4+x 2+1)的值2)若1 y 2,求

1楼 匿名用户 1 x 1 x 3 x 2 1 x 2 2 9 x 2 1 x 2 7 x 2 x 4 x 2 1 1 x 2 1 1 x 2 1 7 1 1 8 2 1 x 1 y 2 y x 2xy x y 2xy 4x 5xy 4y x 3xy y 4 x y 5xy x y 3xy 8 5 ...