1楼:匿名用户
你好!很高兴为你答疑解惑。
向量积(带方向):也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算.与点积不同,它的运算结果是一个伪向量而不是一个标量.
并且两个向量的叉积与这两个向量都垂直.叉积的长度 |a × b| 可以解释成以 a 和 b 为边的平行四边形的面积.(|a||b|cos).
一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,则将右手的拇指指向第一个向量的方向,右手的食指指向第二个向量的方向,那么结果向量的方向就是右手中指的方向.由于向量的叉积由坐标系确定,所以其结果被称为伪向量.
数量积 (不带方向):又称“内积”、“点积”,物理学上称为“标量积”.两向量a与b的数量积是数量|a|·|b|cosθ,记作a·b;其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π).
即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b
我的回答你还满意吗?望采纳,谢谢!
2楼:沃仁鹿雀
向量数量积是两向量的模相乘再乘以两向量夹角的余弦值,而向量的向量积是两模相乘再乘夹角正弦值,此外数量积结果是个标量,向量积结果仍是矢量
3楼:张廖诚蒲妆
向量积(矢积)与数量积(标积)的区别
1、在教课中称呼不同
谁能告诉我向量的数量积和向量积有什么不同?
4楼:學雅思
一、指代不同
1、数量积:是接受在实数r上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。
2、向量积:是一种在向量空间中向量的二元运算。
二、几何意义不同
1、数量积:在点积运算中,第一个向量投影到第二个向量上(这里,向量的顺序是不重要的,点积运算是可交换的),然后通过除以它们的标量长度来“标准化”。这样,这个分数一定是小于等于1的,可以简单地转化成一个角度值。
2、向量积:叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:
混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。
三、应用不同
1、数量积:平面向量的数量积a·b是一个非常重要的概念,利用它可以很容易地证明平面几何的许多命题,例如勾股定理、菱形的对角线相互垂直、矩形的对角线相等等。
2、向量积:在物理学光学和计算机图形学中,叉积被用于求物体光照相关问题。求解光照的核心在于求出物体表面法线,而叉积运算保证了只要已知物体表面的两个非平行矢量(或者不在同一直线的三个点),就可依靠叉积求得法线
5楼:匿名用户
数量级也叫标积,其运算结果是标量
运算法则是a=b*c=b * c * cos&大写字母代表矢量(向量),小写字母代表相应向量的摩,&代表两向量间夹角。“*”是乘号,书写时应用点,
故数量积运算在口语中经常被称为“点乘”。
向量积也叫矢积,其运算结果是矢量
运算法则是a=b×c=b * c *sin&方向为右手螺旋,即右手握拳,拇指向上伸出,让四指依次垂直穿过式中第一个向量和第二个向量,拇指方向即a向量方向(注意,b×c和c×b的结果不同,因为向量方向不同。而b*c和c*b的结果相同)。“×”是乘号,书写时应用乘号,故口语中向量积运算经常被称为“叉乘”。
向量的运算在物理中应用较多,比如计算力的功w=f*s;
圆周运动线速度v=w×r;洛伦兹力f=q*v×b等
6楼:匿名用户
数量积是一个数量,乘出来是一个数,大小为两向量的模的乘积再乘以两向量夹角的余弦,没有方向。
向量积是一个向量,乘出来是一个向量,大小为两向量的模的乘积再乘以两向量夹角的正弦,方向与原来的两个向量垂直且构成右手系(例如a与b的向量积的方向为伸出右手,一手腕为原点,手臂于a平行,大拇指与b平行,而当其余四指向上立起时所指的方向为向量积的方向)(也可把a看成x轴,b看成y轴,向量积的方向和z轴方向相同)
7楼:小弟有所不知
数量积是数,向量积是向量。数量积的运算满足交换率,而向量积不满足。
向量积与数量积有什么区别
8楼:度夏山弥棠
向量数量积是两向量的模相乘再乘以两向量夹角的余弦值,而向量的向量积是两模相乘再乘夹角正弦值,此外数量积结果是个标量,向量积结果仍是矢量
9楼:少苒邝婷秀
向量积的结
果是向量,数量积的结果是标量。
向量a×向量b=(absinθ)c°,
c°--是垂直与a.b向量的单位向量。方向符合右手法则。|a×b|=absinθ.(θ---
a,b夹角)
向量a.向量b=abcosθ
(是标量).
10楼:居玲玲开运
解:符号
大小方向
数量积:.模长之积*cos(夹角)
无向量积:*
模长之积*sin(夹角)
右手定则
右手定则:a*b
的方向为:
右手大拇指指向a,食指指向b,中指与大拇指和食指所在平面相垂直中指方向为向量积方向
11楼:y神级第六人
数量积的结果是数值,向量积的结果仍然是向量.
向量积(带方向):也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个伪向量而不是一个标量。
并且两个向量的叉积与这两个向量都垂直。 叉积的长度 |a × b| 可以解释成以 a 和 b 为边的平行四边形的面积.(|a||b|cos)。
一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,则将右手的拇指指向第一个向量的方向,右手的食指指向第二个向量的方向,那么结果向量的方向就是右手中指的方向。由于向量的叉积由坐标系确定,所以其结果被称为伪向量。
数量积 (不带方向):又称“内积”、“点积”,物理学上称为“标量积”。两向量a与b的数量积是数量|a|·|b|cosθ,记作a·b;其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π)。
即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b
12楼:季坤由俊雅
数量级也叫标积,其运算结果是标量
运算法则是a=b*c=b*c*cos&
大写字母代表矢量(向量),小写字母代表相应向量的摩,&代表两向量间夹角。“*”是乘号,书写时应用点,
故数量积运算在口语中经常被称为“点乘”。
向量积也叫矢积,其运算结果是矢量
运算法则是a=b×c=b*c*sin&
方向为右手螺旋,即右手握拳,拇指向上伸出,让四指依次垂直穿过式中第一个向量和第二个向量,拇指方向即a向量方向(注意,b×c和c×b的结果不同,因为向量方向不同。而b*c和c*b的结果相同)。“×”是乘号,书写时应用乘号,故口语中向量积运算经常被称为“叉乘”。
向量的运算在物理中应用较多,比如计算力的功w=f*s;
圆周运动线速度v=w×r;洛伦兹力f=q*v×b等
13楼:赧杏富察绮玉
数量积的答案是数值,而向量积的答案还是向量。前者可看做标量,后者可看做矢量。既然向量积可以看做矢量,那么它就有方向,其方向根据右手定则判断。
数学向量中向量积与数量积有什么区别?适用于什么?谢谢
14楼:匿名用户
向量积是所谓的叉乘,数量积是点乘,向量积主要应用于面积计算和法向量计算和某些物理问题,数量积么,就是老师无聊让你算着玩的。
15楼:匿名用户
数量积是没有方向只有大小的两个量的积,向量积是两个既有大小又有方向的两个量的积
16楼:刘张戴
向量积与向量积的模区别
向量的数量积和向量积是怎么算的
17楼:fly划过的星空
数量积ab=ac+bd
向量积要利用行列式
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),则 向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=
| i j k|
|a1 b1 c1|
|a2 b2 c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量这是三维才有的
18楼:幸尔芙巧树
你好!很高兴为你答疑解惑。
向量积(带方向):也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算.与点积不同,它的运算结果是一个伪向量而不是一个标量.
并且两个向量的叉积与这两个向量都垂直.叉积的长度|a×
b|可以解释成以a和
b为边的平行四边形的面积.(|a||b|cos).一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:
若坐标系是满足右手定则的,则将右手的拇指指向第一个向量的方向,右手的食指指向第二个向量的方向,那么结果向量的方向就是右手中指的方向.由于向量的叉积由坐标系确定,所以其结果被称为伪向量.
数量积(不带方向):又称“内积”、“点积”,物理学上称为“标量积”.两向量a与b的数量积是数量|a|·|b|cosθ,记作a·b;其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π).
即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b
我的回答你还满意吗?望采纳,谢谢!
19楼:黎涵瑶谢初
,可在文库查看完整内容》
原发布者:青虬白鹿
第三节向量的数量积和向量积一,两向量的数量积二,两向量的向量积一,两向量的数量积1定义两个向量a两个向量a和b的模与它们之间夹角的余弦之积,的模与它们之间夹角的余弦之积,称为向量a与的数量积,记作ab,b,即称为向量与b的数量积,记作b,即ab=abcos(a,b)数量积也称点积.数量积也称点积.点积力学意义:
一物体在力f的作用下力学意义:一物体在力的作用下,的作用下,沿直线ab移动了f与的夹角为移动了s,的夹角为α,沿直线移动了,与ab的夹角为a如右图,则力对物体做的功为如右图,fθsbw=fscosθ2性质:性质:
(1)aa=a2)a=aii=1,jj=1,kk=1(2)a⊥bab=0)ij=0,jk=0,ki=0(3)表示两非零向量a和b的夹角,则有)表示两非零向量aθ的夹角,abcosθ=ab3运算律(1)交换律ab=ba)(2)分配律(a+b)c=ac+bc)(3)结合律(λa)b=λ(ab)=a(λb))其中λ为常数.常数.其中常数4数量积的计算公式设向量a=x1i+y1j+z1k,b=x2i+y2j+z2k则有ab=x1x2+y1y2+z1z2证明:
证明:ab=(x1i+y1j+z1k)(x2i+y2j+z2k)=x1x2+y1y2+z1z2abcosθ==ab=x1x2ii+x1y2ij+x1z2ik+y1x2ji+y1y2jj
向量的混合积与双外积的区别,向量的内积和外积的区别
1楼 匿名用户 其实只有数量三重积才是表达六面体的体积 向量三重积的话,这个依然是个向量,但在几何意义上的理解比较复杂很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报 。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。 如果问题解决后,请点击下面的 ...
向量的内积与外积分别是什么意思,向量的内积和外积的区别
1楼 衣衣萬歲 1 向量的内积 即 向量的的数量积 定义 两个非零向量的夹角记为 a,b ,且 a,b 0, 。 定义 两个向量的数量积 内积 点积 是一个数量,记作a b。若a b不共线,则a b a b cos a,b 若a b共线,则a b a b 。 2 向量的外积 即 向量的向量积 定义 ...
向量的内积和外积数值是一样的吗,两个向量的内积和乘积有什么区别
1楼 匿名用户 内积就是数量积,是一个实数。 外积是一个向量,不是一个数值。 两者本质上就不同。 矩阵的乘法和向量内积有关还是和外积有关? 2楼 匿名用户 应该是内积 我们知道尽管矩阵相乘后还是矩阵 向量内积是1个数值不是向量了 而外积还是一个向量,只不过得和前面2个向量垂直但是最重要的一条是 相乘...