函数单调性,求函数单调性的基本方法?

2021-01-12 06:11:32 字数 4945 阅读 4994

1楼:匿名用户

一.内容和内容解析

函数的单调性是研究当自变量x不断

增大时,它的函数y增大还是减小的性质.如函数单调增表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质.

函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质.

函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法.这就是,加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画.

函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位.

教学的重点是,引导学生对函数在区间(a,b)上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间(a,b)上任意取x1,x2,当x1<x2时,有 f(x2)>f(x1)(或f(x2)<f(x1)),则称函数f(x)在区间(a,b)上单调增(或单调减).

二.目标和目标解析

本节课要求学生理解函数在某区间上单调的意义,掌握用函数单调性的定义证明简单函数在某区间上具有某种单调性的方法(步骤).

1.能够以具体的例子说明某函数在某区间上是增函数还是减函数;

2.能够举例,并通过绘制图形说明函数在定义域的子集(区间)上具有单调性,而在整个定义域上未必具有单调性,说明函数的单调性是函数的局部性质;

3.对于一个具体的函数,能够用单调性的定义,证明它是增函数还是减函数:在区间上任意取x1,x2,设x1<x2,作差f(x2)-f(x1),然后判断这个差的正、负,从而证明函数在该区间上是增函数还是减函数.

三.教学问题诊断分析

学生已有的认知基础是,初中学习过函数的概念,初步认识到函数是一个刻画某些运动变化数量关系的数学概念;进入高中以后,又进一步学习了函数的概念,认识到函数是两个数集之间的一种对应.学生还了解函数有三种表示方法,特别是可以借助图象对函数特征加以直观考察.此外,还学习过一次函数、二次函数、反比例函数等几个简单而具体的函数,了解它们的图象及性质.尤其值得注意的是,学生有利用函数性质进行两个数大小比较的经验.

“图象是上升的,函数是单调增的;图象是下降的,函数是单调减的”仅就图象角度直观描述函数单调性的特征学生并不感到困难.困难在于,把具体的、直观形象的函数单调性的特征抽象出来,用数学的符号语言描述.即把某区间上“随着x的增大,y也增大”(单调增)这一特征用该区间上“任意的x1<x2,有f(x1)<f(x2)”(单调增)进行刻画.其中最难理解的是为什么要在区间上“任意”取两个大小不等的x1,x2.

教学中,通过一次函数、二次函数等具体函数的图象及数值变化特征的研究,得到“图象是上升的”,相应地,即“随着x的增大,y也增大”,初步提出单调增的说法.通过讨论、交流,让学生尝试,就一般情况进行刻画,提出“在某区间上,如果对于任意的x1<x2有f(x1)<f(x2)”则函数在该区间上具有“图象是上升的”、“随着x的增大,y也增大”的特征.进一步给出函数单调性的定义.然后通过辨析、练习等帮助学生理解这一概念.

企图在一节课中完成学生对函数单调性的真正理解可能是不现实的.在今后,学生通过判断函数的单调性,寻找函数的单调区间,运用函数的单调性解决具体问题,等一系列学习活动可以逐步理解这个概念.

求函数单调性的基本方法?

2楼:nice千年杀

一般是用导数法。对f(x)求导,f’(x)=3x-3=3(x+1)(x-1)

令f’(x)>0,可得到单调递增区间(-∞,-1)∪(1,+∞),同理单调递减区间[-1,1]

复合函数还可以用规律法,对于f(g(x)),如果f(x),g(x)都单调递增(减),则复合函数单调递增;否则,单调递减。口诀:同增异减。

还可以使用定义法,就是求差值的方法。

拓展资料

导数:导数是变化率、是切线的斜率、是速度、是加速度;导数是用来找到“线性近似”的数学工具;导数是线性变换,这是导数的三重认识,定义是函数值的变化量比上自变量的变化量。

3楼:安贞星

1、导数法

首先对函数进行求导,令导函数等于零,得x值,判断x与导函数的关系,当导函数大于零时是增函数,小于零是减函数。

2、定义法

设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数.

3、性质法

若函数f(x)、g(x)在区间b上具有单调性,则在区间b上有:

① f(x)与f(x)+c(c为常数)具有相同的单调性;

②f(x)与cf(x)当c>0具有相同的单调性,当c<0具有相反的单调性;

③当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;

④当f(x)、g(x)都是增(减)函数,则f(x)g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;

4、复合函数同增异减法

对于复合函数y=f [g(x)]满足“同增异减”法(应注意内层函数的值域),令 t=g(x),则三个函数 y=f(t)、t=g(x)、y=f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数。

拓展资料:

函数的定义:

给定一个数集a,假设其中的元素为x。现对a中的元素x施加对应法则f,记作f(x),得到另一数集b。假设b中的元素为y。

则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。

函数单调性的定义:

一般的,设函数y=f(x)的定义域为a,ia,如对于区间内任意两个值x1、x2,

1)、当x12)、当x1>x2时,都有f(x1)>f(x2),那么就说y=f(x)在区间i上是单调减函数,i称为函数的单调减区间。

4楼:飘雪啊

1. 定义法:证明函数

单调性一般用定义,如果函数解析式异常复杂或者具有某种特殊形式,可以采用函数单调性定义的等价形式证明。

2.性质法: 熟练掌握基本初等函数的单调性及其单调区间。理解并掌握判断复合函数单调性的方法(同增异减。)

3. 高三选修课本有导数及其应用,用导数求函数的单调区间一般是非常简便的。

函数的定义:给定一个数集a,假设其中的元素为x。现对a中的元素x施加对应法则f,记作f(x),得到另一数集b。

假设b中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。

函数的单调性就是随着x的变大,y在变大就是增函数,y变小就是减函数,具有这样的性质就说函数具有单调性,符号表示:就是定义域内的任意取x1,x2,且x1<x2,比较f(x1),f(x2)的大小,图像上看从左往右看图像在一直上升或下降的就是单调函数。

常用方法:

1.导数

2.构造基本初等函数(已知单调性的函数)

3.复合函数:根据同增异减口诀,先判断内层函数的单调性,再判断外层函数单调性,在同一定义域上,若两函数单调性相同,则此复合函数在此定义域上为增函数,反之则为减函数。

4.定义法

5.数形结合

6.复合函数的单调性一般是看函数包含的两个函数的单调性:

(1)如果两个都是增的,那么函数就是增函数;

(2)一个是减一个是增,那就是减函数 ;

(3)两个都是减,那就是增函数。

5楼:匿名用户

一、相减法。即判断f(x1)-f(x2)(其中x1和x2属于定义域,假设x1,若该式小于零,则在定义域内函数为增函数。(要注意的是在定义域内,函数既可能为增函数,也可能为减函数,具体情况要看求出来的x的范围,注意不等式的解答时不要错。

)拿你举的例子来说:

首先,确定函数的定义域:r.

第二步,令x10,则得到的x的区间为f(x)的单调递增区间。(其原因你画下图像就很明显了).

拿你的例子来说吧。

第一步还是确定定义域:为r. 第二步求导,为f(x)’=3x^2-3。

第三步,求区间:令f(x)’>0有x>1或x<-1,所以f(x)的增区间为(1,正无穷)和(负无穷,-1);令f(x)’<=0,有-1<=x<=1,所以f(x)的减区间为[-1,1]。端点取在哪儿都可以,连续函数的话不影响其单调性。

最后总结一下即可。

6楼:匿名用户

1. 把握好函数单调性的定义。证明函数单调性一般(初学最好用定义)用定义(谨防循环论证),如果函数解析式异常复杂或者具有某种特殊形式,可以采用函数单调性定义的等价形式证明。

另外还请注意函数单调性的定义是[充要命题]。

2. 熟练掌握基本初等函数的单调性及其单调区间。理解并掌握判断复合函数单调性的方法:同增异减。

3. 高三选修课本有导数及其应用,用导数求函数的单调区间一般是非常简便的。 还应注意函数单调性的应用,例如求极值、比较大小,还有和不等式有关的问题。

定义法的基本步骤:

一般的,求函数单调性有如下几个步骤:

1、取值x1,x2属于,并使x1

2、作差f(x1)-f(x2)

3、变形

4、定号(判断f(x1)-f(x2)的正负)

5、下结论

常用方法:

1.导数

2.构造基本初等函数(已知单调性的函数)

3.复合函数:根据同增异减口诀,先判断内层函数的单调性,再判断外层函数单调性,在同一定义域上,若两函数单调性相同,则此复合函数在此定义域上为增函数,反之则为减函数。

4.定义法

5.数形结合

6.复合函数的单调性一般是看函数包含的两个函数的单调性:(1)如果两个都是增的,那么函数就是增函数;(2)一个是减一个是增,那就是减函数 ;(3)两个都是减,那就是增函数

什么是函数的单调性,什么是函数单调性?

1楼 匿名用户 函数的单调性 monotonicity 也可以叫做函数的增减性。当函数 f x 的自变量在其定义区间内增大 或减小 时,函数值f x 也随着增大 或减小 ,则称该函数为在该区间上具有单调性。 在集合论中,在有序集合之间的函数,如果它们保持给定的次序,是具有单调性的。 如果说明一个函数...

符号函数的单调性是什么,符号函数是否具有单调性,如果有是单调递增还是单调递减

1楼 匿名用户 复合法 用来求复合函数的单调性 就是那个同增异减的 导数法 求出原函数的导数 若导数》0 则是增 反之则减 函数的单调性是研究当自变量x不断增大时 它的函数y增大还是减小的性质 如函数单调增表现为 随着x增大 y也增大 这一特征 与函数的奇偶性不同 函数的奇偶性是研究x成为相反数时 ...

在R上的单调函数是否要求函数图像连续

1楼 r jun宝贝 说到在某一区间上单调的话,在此区间上函数一定是连续的。 r上的单调函数图像,不要只给答案哟。 2楼 皮皮鬼 选b函数图像从左向右看,一直上升的就是增函数。 3楼 匿名用户 答案为b,因为在选项b的图像中,y是随x的增大而增大的,即图像有向上升的趋势,即为增函数。 4楼 摩羯 单...