1楼:匿名用户
根据内心的性质有:p为δabc所在空间中任意一点,点o是δabc内心的充要条件是:向量po=(a×向量pa+b×向量pb+c×向量pc)/(a+b+c)
把性质中的p点设为b,则bo=(4*ba+3*0+2bc)/(4+3+2)=(4ba+2bc)/9
ao=bo-ba=(4ba+2bc)/9-ba=(-5ba+2bc)/9=(5ab+2bc)/9
λ+μ=5/9+2/9=7/9
2楼:晨曦微露
这有公式吧 三角形三个心都有 内心 中心 重心
高中数学向量公式
3楼:
设a=(x,y),b=(x',y').
1、向量的加法
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c).
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
ab-ac=cb.即“共同起点,指向被减”
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
4、数乘向量
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
扩展资料:
表达方式
1、代数表示
一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,如
2、几何表示
向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。
4楼:demon陌
设a=(x,y),b=(x',y').
1、向量的加法
向量的加法满足平行四边形法则和三角形法则.
ab+bc=ac.
a+b=(x+x',y+y').
a+0=0+a=a.
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c).
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
ab-ac=cb.即“共同起点,指向被减”
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
3、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣.
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意.
当a=0时,对于任意实数λ,都有λa=0.
注:按定义知,如果λa=0,那么λ=0或a=0.
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb).
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:
① 如果实数λ≠0且λa=λb,那么a=b.
② 如果a≠0且λa=μa,那么λ=μ.
4、向量的的数量积
定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.
向量的数量积的坐标表示:a·b=x·x'+y·y'.
向量的数量积的运算率
a·b=b·a(交换率);
(a+b)·c=a·c+b·c(分配率);
向量的数量积的性质
a·a=|a|的平方.
a⊥b 〈=〉a·b=0.
|a·b|≤|a|·|b|.
向量的数量积与实数运算的主要不同点
1)向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.
2)向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.
3)|a·b|≠|a|·|b|
4)由 |a|=|b| ,推不出 a=b或a=-b
4、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:
∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积.
a×a=0.
a∥b〈=〉a×b=0.
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量ab/向量cd”是没有意义的.
扩展资料:
向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(a)和终点(b),可将向量记作ab(并于顶上加→)。
在空间直角坐标系中,也能把向量以数对形式表示,例如oxy平面中(2,3)是一向量。
在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。
一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
研究向量空间一般会涉及一些额外结构。额外结构如下:
1 一个实数或复数向量空间加上长度概念。就是范数称为赋范向量空间。
2 一个实数或复数向量空间加上长度和角度的概念,称为内积空间。
3 一个向量空间加上拓扑学符合运算的(加法及标量乘法是连续映射)称为拓扑向量空间。
4 一个向量空间加上双线性算子(定义为向量乘法)是个域代数。
概念:2 向量的模:有向线段ab的长度叫做向量的模,记作|ab|;
4 相等向量:长度相等且方向相同的向量叫做相等向量;
5 平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;
6 单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示,平行于坐标轴的单位向量习惯上分别用i、j表示。
7 相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
向量的模的运算没有专门的法则,一般都是通过余弦定理计算两个向量的和、差的模。多个向量的合成用正交分解法,如果要求模一般需要先算出合成后的向量。模是绝对值在二维和三维空间的推广,可以认为就是向量的长度。
推广到高维空间中称为范数。
向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。
其应用也十分广泛,通常应用于物理学光学和计算机图形学中。
5楼:腾礼巴绫
向量ab+向量ac=以
abac
为邻边的
平行四边形abce
里的向量ae,
而根据平行四边形性质对角线交点互相平分所以d为ae中点
所以向量ab+向量ac=向量ae,即向量ab+向量ac=2向量ad
6楼:宫帅王耘志
1因向量
ab与向量a平行且相反,向量a=向量2i-向量4j。故向量ab=-向量a=-(向量2i-向量4j)=向量4j-向量2i故向量ob=向量oa+向量ab=向量3i+向量j+向量4j-向量2i=向量i+向量5j
2因平行四边形oacb
故向量ac=向量ob
【附】因ab模为4根号5
故(向量2i)平方+(向量4j)平方=ab模平方=(4根号5)平方=80①
又因i模=j模
故解①式得i模=j模=2
7楼:闪向欧良工
平移变换
y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量
(m,n)平移的意义。
对称变换
y=f(x)→y=f(-x),关于y轴对称y=f(x)→y=-f(x)
,关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称
8楼:匿名用户
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2. 加法与减法的代数运算:
9楼:毛小宇大哥哥
其实高中数学向量公式很简单,自己画个图,然后慢慢想一想就知道了
跪求新课标数学平面向量公式
1楼 小8白 1 向量的的数量积 定义 已知两个非零向量a b。作oa a ob b 则角aob称作向量a和向量b的夹角,记作 a b 并规定0 a b 定义 两个向量的数量积 内积 点积 是一个数量,记作a b。若a b不共线,则a b a b cos a,b 若a b共线,则a b a b 。 ...
高中数学,面面夹角如何求(不用向量公式)类似于这种方法
1楼 体育wo最爱 设直线l与平面 相交于点a,直线l上任意一点p在平面 内的射影为o则po 连接ao 那么, poa就是直角三角形 且角pao就是直线l与面 的夹角 2楼 孤珩殿下 这种题目归于立体几何,通常它的第二道小题,就是求线面角,二面角 面面角 高中数学利用空间向量求夹角和距离所有公式及使...
向量的点乘和叉乘的区别大学高数物理
1楼 分清点乘和叉乘 点乘 也叫向量的内积 数量积,求下来的结果是一个数 向量a 向量b a b cos 在物理学中 已知力与位移求功 实际上就是求向量f与向量s的内积 即要用点乘 叉乘 也叫向量的外积 向量积,求下来的结果是一个向量 记这个向量为c 向量c 向量a 向量b a b sin 向量c的...