向量的叉积什么时候学??高中还是大学我高中记得只学过

2020-11-25 19:45:39 字数 5714 阅读 8809

1楼:轩辕无鱼

叉积是大学学的……目前国内高中教材应该没有

内积不止在平几有用,对多维空间依旧有用,例子我就不举了

叉积一开始是在三维时学的,但之后可以推广到多维的情形

2楼:爱生活没道理

我现在大一,前些天刚学完三维空间的叉积.是《线性代数与空间解析几何》里的内容,目前我只知道应用在三维空间里.

为什么高中数学不学习平面向量的向量积(外积)?

3楼:匿名用户

个人认为:

这要从生产生活中,点积(数量积)和外积应用谈起。

在生产生活中,点积应用广泛。

以物理学和计算机图形学为例

如物理中,点积可以用来计算合力和功。若b为单位矢量,则点积即为a在方向b的投影,即给出了力在这个方向上的分解。功即是力和位移的点积。

利用点积可判断一个多边形是否面向摄像机还是背向摄像机。向量的点积与它们夹角的余弦成正比,因此在聚光灯的效果计算中,可以根据点积来得到光照效果,如果点积越大,说明夹角越小,则物理离光照的轴线越近,光照越强。

计算机图形学常用来进行方向性判断,如两矢量点积大于0,则它们的方向朝向相近;如果小于0,则方向相反。矢量内积是人工智能领域中的神经网络技术的数学基础之一,此方法还被用于动画渲染(animation-rendering)。

在生产生活中,外(叉)积同样应用广泛。

仍然以物理学和计算机图形学为例

如在物理学光学和计算机图形学中,叉积被用于求物体光照相关问题。

求解光照的核心在于求出物体表面法线,而叉积运算保证了只要已知物体表面的两个非平行矢量(或者不在同一直线的三个点),就可依靠叉积求得法线。

综上,由学为所用的原则,故高中数学只学习学习平面向量的数量积(外积)而暂时不需学习平面向量的向量积(外积)

关于法线多说几句

①法线的定义:始终垂直于某平面的虚线。

曲线的法线是垂直于曲线上一点的切线的直线,曲面上某一点的法线指的是经过这一点并且与该点切平面垂直的那条直线(即向量)。

②其它过入射点垂直于镜面的直线叫做法线。

对于立体表面而言,法线是有方向的:一般来说,由立体的内部指向外部的是法线正方向,反过来的是法线负方向。

对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。

如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足lipschitz连续的曲面可以认为法线几乎处处存在。

曲面法线的法向不具有唯一性;在相反方向的法线也是曲面法线。定向曲面的法线通常按照右手定则来确定。

法线是用来描述表面的方向的,表面的方向很重要,比如你贴一张图在一个表面上,就像在玻璃上贴一个字,在反面看这个字就会是个反字,所以表面法线是有必要的。另外方向不一致也会导致无法焊接,uv翻转等。法线的正反对分uv贴材质的时候会有影响,如果法线是反的,你贴的材质也会反着看。

曲面法线在定义向量场的曲面积分中有着重要应用。 在三维计算机图形学中通常使用曲面法线进行光照计算;参见朗伯余弦定律(lambert's cosine law)。

4楼:匿名用户

大学学,可能难些。采纳啊

5楼:饭统饭统饭统

不需要学,你想学也可以

6楼:shmily小乖乖

我记得理科有教哦你是文科吧

高中数学中 用学那个向量叉积么?

7楼:

不用学,只学“点积”,就是“数量积”。叉积在大学高等数学才学的

8楼:尹六六老师

用不着,即便在求平面法向量时,也可以用解方程组的方法巧妙地避过。

向量积怎么算的?在高中数学中有用吗?

9楼:匿名用户

向量乘法包括:向量积,数量积向量积也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个伪向量而不是一个标量。

并且两个向量的叉积与这两个向量都垂直。定义:两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。

叉积可以被定义为:在这里θ表示和之间的角度(0° ≤ θ ≤ 180°),它位于这两个矢量所定义的平面上。而n是一个与和均垂直的单位矢量。

向量由向量空间的方向确定,即按照给定直角坐标系 (i, j, k) 的左右手定则。若 (i, j, k) 满足右手定则,则 (a, b, a × b) 也满足右手定则;或者两者同时满足左手定则。几何意义:

叉积的长度 |a × b| 可以解释成以 a 和 b 为边的平行四边形的面积。进一步就是说,三重积可以得到以 a,b,c 为边的平行六面体的体积。向量的数量积已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,点积.记作a

10楼:匿名用户

有用,因为高中涉及到的问题不少,所以现在要打好基础,努力哦!

在大学课本中向量的点积坐标公式是用余弦定理导出的,但在高中,用向量方法证明余弦定理,这严谨吗,这不

11楼:电灯剑客

这个还算不上循环论证

首先这些结论本身都有不止一种证法,两本课本也不是同一个人写的,他们没有义务知道你用的是什么教材,以及别的作者写了些什么

如果高中课本里向量的内积公式也是由余弦定理推出的,并且这两个结论都没有提供过其它证法,那可以认为作者循环论证

另外,你在高中学的向量内积和大学里学的也不见得完全一样(当然肯定是一回事,但形式可能不同),不同形式之间的等价性其实也是需要证明的,你见到的两个证明就可以派这个用处

(数学上用a证明b,再用b证明a,这样做可以说明a和b等价,这和a,b本身如何由其它公理/定理来证明没有关系,甚至和a,b是否是真命题也没有关系)

12楼:

余弦定理用勾股定理证明即可。在向量之前即得证明。

向量公式是啥,,作为大学狗高中只是全还给老师了

13楼:梦vs希望

设a=(x,y),b=(x',y')。

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

ab+bc=ac。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

ab-ac=cb. 即“共同起点,指向被减”

a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)b=λ(ab)=(aλb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积

定义:已知两个非零向量a,b。作oa=a,ob=b,则角aob称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。

向量的数量积的坐标表示:ab=xx'+yy'。

向量的数量积的运算律

ab=ba(交换律);

(λa)b=λ(ab)(关于数乘法的结合律);

(a+b)c=ac+bc(分配律);

向量的数量积的性质

aa=|a|的平方。

a⊥b 〈=〉ab=0。

|ab|≤|a||b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。

2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c。

3、|ab|≠|a||b|

4、由 |a|=|b| ,推不出 a=b或a=-b。

4、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:

∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量ab/向量cd”是没有意义的。

向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

① 当且仅当a、b反向时,左边取等号;

② 当且仅当a、b同向时,右边取等号。

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

① 当且仅当a、b同向时,左边取等号;

② 当且仅当a、b反向时,右边取等号。

定比分点

定比分点公式(向量p1p=λ向量pp2)

设p1、p2是直线上的两点,p是l上不同于p1、p2的任意一点。则存在一个实数 λ,使 向量p1p=λ向量pp2,λ叫做点p分有向线段p1p2所成的比。

若p1(x1,y1),p2(x2,y2),p(x,y),则有

op=(op1+λop2)(1+λ);(定比分点向量公式)

x=(x1+λx2)/(1+λ),

y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

我们把上面的式子叫做有向线段p1p2的定比分点公式

三点共线定理

若oc=λoa +μob ,且λ+μ=1 ,则a、b、c三点共线

三角形重心判断式

在△abc中,若ga +gb +gc=o,则g为△abc的重心

[编辑本段]向量共线的重要条件

若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

a//b的重要条件是 xy'-x'y=0。

零向量0平行于任何向量。

[编辑本段]向量垂直的充要条件

a⊥b的充要条件是 ab=0。

a⊥b的充要条件是 xx'+yy'=0。

零向量0垂直于任何向量.

【【还有空间 向量,此时空间中两点的距离问根号【(x1-x2)+(y1-y2)+(z1-z2)】