跪求新课标数学平面向量公式

2020-11-22 16:55:10 字数 1758 阅读 2733

1楼:小8白

1、向量的的数量积

定义:已知两个非零向量a,b。作oa=a,ob=b,则角aob称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。

向量的数量积的坐标表示:ab=xx'+yy'。

向量的数量积的运算律

ab=ba(交换律);

(λa)b=λ(ab)(关于数乘法的结合律);

(a+b)c=ac+bc(分配律);

向量的数量积的性质

aa=|a|的平方。

a⊥b 〈=〉ab=0。

|ab|≤|a||b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。

2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c。

3、|ab|≠|a||b|

4、由 |a|=|b| ,推不出 a=b或a=-b。

2、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:

∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量ab/向量cd”是没有意义的。

3、向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

① 当且仅当a、b反向时,左边取等号;

② 当且仅当a、b同向时,右边取等号。

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

① 当且仅当a、b同向时,左边取等号;

② 当且仅当a、b反向时,右边取等号。

4、定比分点

定比分点公式(向量p1p=λ向量pp2)

设p1、p2是直线上的两点,p是l上不同于p1、p2的任意一点。则存在一个实数 λ,使 向量p1p=λ向量pp2,λ叫做点p分有向线段p1p2所成的比。

若p1(x1,y1),p2(x2,y2),p(x,y),则有

op=(op1+λop2)(1+λ);(定比分点向量公式)

x=(x1+λx2)/(1+λ),

y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

我们把上面的式子叫做有向线段p1p2的定比分点公式

5、三点共线定理

若oc=λoa +μob ,且λ+μ=1 ,则a、b、c三点共线

三角形重心判断式

在△abc中,若ga +gb +gc=o,则g为△abc的重心

向量共线的重要条件

若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

a//b的重要条件是 xy'-x'y=0。

零向量0平行于任何向量。

向量垂直的充要条件

a⊥b的充要条件是 ab=0。

a⊥b的充要条件是 xx'+yy'=0。

零向量0垂直于任何向量.