1楼:匿名用户
^三角函数公式:1.万能公式
令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2) 2.辅助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a 3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] 4.
积化和差 sina*cosb=[sin(a+b)+sin(a-b)]/2 cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 5.积化和差 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2] sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
高中三角函数公式大全
2楼:匿名用户
http://wenku.baidu.***/view/4184250c6bd97f192279e9a0.html?from=search
高中数学三角函数(完整加分)
3楼:匿名用户
^三角函数公式
两角和公式
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-cosasinb
cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)
tan(a-b)=(tana-tanb)/(1+tanatanb)
cot(a+b)=(cotacotb-1)/(cotb+cota)
cot(a-b)=(cotacotb+1)/(cotb-cota)
倍角公式
tan2a=2tana/(1-tan^2a)
sin2a=2sina?cosa
cos2a=cos^2a--sin^2a
=2cos^2a—1
=1—2sin^2a
三倍角公式
sin3a=3sina-4(sina)^3;
cos3a=4(cosa)^3-3cosa
tan3a=tana?tan(π/3+a)?tan(π/3-a)
半角公式
sin(a/2)=√
cos(a/2)=√
tan(a/2)=√
cot(a/2)=√
tan(a/2)=(1--cosa)/sina=sina/(1+cosa)
和差化积
sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]
tana+tanb=sin(a+b)/cosacosb
积化和差
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]
诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π/2-a)=cos(a)
cos(π/2-a)=sin(a)
sin(π/2+a)=cos(a)
cos(π/2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
tga=tana=sina/cosa
万能公式
sin(a)=[2tan(a/2)]/
cos(a)=/
tan(a)=[2tan(a/2)]/
其它公式
a?sin(a)+b?cos(a)=[√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a]
a?sin(a)-b?cos(a)=[√(a^2+b^2)]*cos(a-c)[其中,tan(c)=a/b]
1+sin(a)=[sin(a/2)+cos(a/2)]^2;
1-sin(a)=[sin(a/2)-cos(a/2)]^2;;
其他非重点三角函数
csc(a)=1/sin(a)
sec(a)=1/cos(a)
双曲函数
sinh(a)=[e^a-e^(-a)]/2
cosh(a)=[e^a+e^(-a)]/2
tgh(a)=sinh(a)/cosh(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
4楼:匿名用户
在直角三角形中sin=对边
/斜边 csc=斜边/对边=1/sincos=邻边/斜边 sec=斜边/邻边=1/costan=对边/邻边
正余弦函数图象
正切函数图象
5楼:午后蓝山
这个地方传不上来**,你到“青一色大学生吧”,有个学习帖,有你要的所有数学资料
6楼:行星的故事
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三: 任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六: π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
推算公式:3π/2±α与α的三角函数值之间的关系:
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
诱导公式记忆口诀:“奇变偶不变,符号看象限”。
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:
把角α看做锐角,不考虑α角所在象限,看n(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
符号判断口诀:
“一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切和余切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。
高中数学有关三角函数的所有公式
7楼:匿名用户
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
1+tan2α=sec2α
1+cot2α=csc2α
诱导公式
sin(-α)=-sinα
cos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈z)
两角和与差的三角函数公式
万能公式
sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ
学三角函数有什么用,三角函数学了有什么用。。。?
1楼 小小鱼丸最厉害 用角度来判断物体运动轨迹的初级算法,虽然叫三角函数,但实际上脱离不了圆形,就是用来画波浪线的,学艺术设计类的用途较大,比如艺术建筑设计,服装设计,还有指示标识之类的设计。其他的还真搜索没有什么大用。 三角函数学了有什么用。。。? 2楼 匿名用户 三角函授是大学理科的重要基础 数...
三角函数的意义是什么啊,三角函数的意义是什么
1楼 山古哩 您好,很高兴为您解答。 在定义上讲 三角函数是数学中常见的一类关于角度的函数。也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何...
学三角函数到底有什么用,三角函数学了有什么用。。。?
1楼 匿名用户 一本书在讨论三角函数,学生学会了,下学期也忘了,别说普通人。现在数学教学体制有问题。 正确的是学习计算机如何计算数学。 2楼 恢讻殖皰 1 如果你考工科,以后做工程师,很多地方要用的。2 如果你以后搞数学研究,应该有的项目也有用3 其他就没有用了。 3楼 木颖 扩展你思考问题的思路,...