1楼:小亞
(i)∵sn+1=4an+2,∴sn=4an-1+2(n≥2),两式相减:an+1=4an-4an-1(n≥2),∴an+1=4(an-an-1)(n≥2),∴bn=an+1-2an,
∴bn+1=an+2-2an+1=4(an+1-an)-2an+1,bn+1=2(an+1-2an)=2bn(n∈n*),
∴bn+1bn
=2,∴是以2为公比的等比数列,(4分)
∵b1=a2-2a1,而a1+a2=4a1+2,∴a2=3a1+2=5,b1=5-2=3,
∴bn=3?2n-1(n∈n*)(7分)
(ii)**=b
n3=n?1,∴1
logc
n+1?log
**+2
=1log
n?log
n+1=1
n(n+1)
,(9分)
而1n(n+1)=1n
?1n+1,∴t
n=(1?1
2)+(12?1
3)+…+(1n?1
n+1)=1?1
n+1(12分)
已知正项数列an的前n项和为sn,且a1 1a
1楼 匿名用户 解 1 a2 s2 s1 a1 a2 a1 2a1 a2 2 1 a2 a2 2 a2 a2 2 0 a2 1 a2 2 0 a2 1 舍去 或a2 2 a n 1 s n 1 sn a n 2 s n 2 s n 1 a n 2 a n 1 s n 2 sn a n 2 a n 1...
数列an的前n项和为sn,且a1 1,a(n+1)
1楼 百度用户 1 a1 1 a2 s1 a1 a3 s2 a1 a2 4 9 a4 s3 a1 a2 a3 16 27a n 1 sn an s n 1 得a n 1 an an a n 1 4 3 an a n 1 an 4 3 an为q 4 3的等比数列 通项公式an 4 3 n 2 n 2,...
设正数数列an的前n项和为Sn,且对任意的n N,Sn
1楼 杰伦 1 由题意得,2sn an 2 an , 当n 1时,2a1 a1 2 a1 ,解得a1 1, 1分 当n 2时,有2sn 1 an 1 2 an 1 , 式减去 式得,2an an 2 an 1 2 an an 1 于是,an 2 an 1 2 an an 1, an an 1 an ...