已知数列an的前n项和为sn,4sn an2+2an

2020-12-10 16:13:19 字数 6421 阅读 5887

1楼:本木兮

解答:(

1)证明:∵4sn=an

2+2an-3,4sn+1=an+1

2+2an+1-3,

两式相减整理可得(an+1+an)(an+1-an-2)=0,∵n≥3时,an>0,

∴an+1-an-2=0,

∴an+1-an=2,

∴n≥3时,成等差数列;

(2)解:∵4s1=a1

2+2a1-3,

∴a1=3或a1=-1,

∵a1,a2,a3成等比数列,

∴an+1+an=0,

∴q=-1,

∵a3>0,

∴a1=3,

∴an=

3?(?1)

n?1(n=1,2)

2n?3(n≥3)

,∴sn=32

[1?(?1)

n](n=1,2)

n?2n(n≥3).

已知数列an的前n项和为sn,4sn=an^2+2an-3,若a1,a2,a3成等比数列,且n大于

2楼:烟玉英崔环

不懂可以追问,一定尽力解答,祝愉快,望采纳.

(**点开就清晰了)

(2014嘉兴一模)设数列{an}的前n项和为sn,4sn=an2+2an-3,且a1,a2,a3,a4,…,a11 20

3楼:王可乐

^^1问 4a1+6d=20 a1(a1+3d)=(a1+d)^2 两个式子解得 a1=d=2 所以an=2n 2问 bn=n*4^n sn=1*4+2*4^2+3*4^3+4*4^4+5*4^5+..............+n*4^n 4sn=1*4^2+2*4^3+3*4^4+4*4^5+...................+n*4^(n+1) 两式错位相减 留出sn式第一项和4sn式最后一...

已知数列{an}的各项均为整数,是数列{an}的前n项和,且4sn=an^2+2an-3

4楼:匿名用户

4sn=an^2+2an-3,n=1,有sn=a1,得a1=3或-1,以同样的方法求a2,得出a1=-1是不合题意的,a2=5或-3,同样a2=-3是不合题意的,则得出a1=3,a2=5,那a3=8,a4=16,a5=32,a6=64,an=2^n(n要大于等于3)问题2不能理解!已知bn=2^2?那么bn不就是4吗?

还有啥好解!

5楼:匿名用户

^^4sn=an^2+2an-34s(n-1)=a(n-1)^2+2a(n-1)-34an=an^2+2an-a(n-1)^2-2a(n-1)an^2-2an-a(n-1)^2-2a(n-1)=0an^2-a(n-1)^=2(an+a(n-1)(an+a(n-1)(an-(an-1)=2(an+a(n-1)an-a(n-1)=2可知该数列是公差为2的等差数列。4sn=an^2+2an-3=4*(a1+an)n/2an^2+2an-3=2n(a1+an)an^2+2an-3=2n*a1+2n*anan^2+(2-2n)an-2n*a1-3=0(a1+2(n-1))^2+(2-2n)(a1+2(n-1))-2n*a1-3=0a1^2+4(n-1)*a1+4(n-1)^2-2(n-1)*a1-4(n-1)^2-2n*a1-3=0a1^2+2(n-1)*a1-2n*a1-3=0a1^2+2n*a1-2a1-2n*a1-3=0a1^2-2a1+1=4(a1-1)^2=4a1-1=2a1=3或a1-1=-2a1=-1an=3+2(n-1)=3+2n-2=2n+1或an=-1+2(n-1)=-1+2n-2=2n-3tn=2^2(3+3+2(n-1))n/2=2n(4+2n)=4n^2+8n或tn=2^2(-1-1+2(n-1)n/2=2n(2n-4)=4n^2-8n

已知数列an的前n项和为sn,an+3-an=4,求证 数列{an+2+an+1+an}为等差数列 若a1=a2=a3=1求{an}及sn

6楼:匿名用户

4=a(n+3)-a(n)=a(n+3)+a(n+2)-a(n+2)+a(n+1)-a(n+1)-a(n)

=a(n+3)+a(n+2)+a(n+1) - [a(n+2)+a(n+1)+a(n)],

是首项为

a(3)+a(2)+a(1),公差为4的等差数列。

a(n+2)+a(n+1)+a(n) = [a(3)+a(2)+a(1)] + 4(n-1),

a(1)=a(2)=a(3)=1时,

a(n+2)+a(n+1)+a(n) = 3 + 4(n-1) = 4n - 3,

4 = a(n+3) - a(n),

4 = a[3k + 3] - a(3k) = a[3(k+1)] - a[3(k)],

是首项为a(3)=1,公差为4的等差数列。

a[3(k)] = 1 + 4(k-1) = 4k - 3,

4= a[3k-1+3] - a(3k-1) = a[3(k+1)-1] - a[3(k)-1],

是首项为a(2)=1,公差为4的等差数列。

a(3k-1) = 1 + 4(k-1) = 4k-3,

4= a[3k-2+3] - a(3k-2) = a[3(k+1)-2] - a[3(k)-2],

是首项为a(1)=1,公差为4的等差数列。

a(3k-2) = 1 + 4(k-1) = 4k-3,

n=3k-2时,a(n)=4(n+2)/3 - 3,

n=3k-1时,a(n)=4(n+1)/3 - 3,

n=3k 时,a(n)=4n/3 - 3.

a(3k-2)+a(3k-1)+a(3k)=3(4k-3)=12k-9,

s(3k)=[a(1)+a(2)+a(3)] + [a(3*2-2)+a(3*2-1)+a(3*2)] + ... + [a(3k-2)+a(3k-1)+a(3k)]

=12(1+2+...+k) - 9k

=6k(k+1) - 9k=6k^2-3k=3k(2k-1),

s(3k-1) = s(3k) - a(3k) = 6k^2-3k - (4k-3) = 6k^2-7k + 3,

s(3k-2) = s(3k-1) - a(3k-1) = 6k^2 -7k+3 - (4k-3) = 6k^2 - 11k + 6,

n=3k-2时,s(n)=6[(n+2)/3]^2 - 11(n+2)/3 + 6=(2/3)(n+2)^2 - (11/3)(n+2) + 6

n=3k-1时,s(n)=6[(n+1)/3]^2 - 7(n+1)/3 + 3 =(2/3)(n+1)^2 - (7/3)(n+1) + 3

n=3k 时,s(n)=6[n/3]^2 - 3[n/3] = (2/3)n^2 - n

7楼:匿名用户

a(n+3)-an=4

a(n+3)+a(n+2)+a(n+1)-a(n+2)-a(n+1)-an=4

1证完2、1 1 1 5 5 5 9 9 9。。。

一看就知道

an=4[(n-1)/3]+1 高斯函数 不会写成分类也一样sn=3[n/3](2[n/3]-1)+(4[(n-1)/3]+1)(n-3[n/3])

已知数列{an}的前n项和为sn,且满足sn=2an-n,(n∈n*)(ⅰ)求a1,a2,a3的值;(ⅱ)证明{an+1}是等比

8楼:七彩葫芦娃

(i)∵sn=2an-n,

当n=1时,由s1=2a1-1,可得a1=1当n=2时,由s2=a1+a2=2a2-2,可得a2=3当n=3时,由s3=a1+a2+a3=2a3-3,可得a3=7证明:(ii)∵sn=2an-n

∴sn-1=2an-1-(n-1)

两式相减可得,an=2an-1+1,a1+1=2∴an+1=2(a

n?1+1)

所以是以2为首项,以2为公比的等比数列

∴an=2n-1

解:(iii)∵bn=(2n+1)an+2n+1∴bn=(2n+1)2n

∴tn=3?2+5?22+…+(2n+1)?2n2tn=3?22+5?23+…(2n-1)?2n+(2n+1)?2n+1

两式相减可得,-tn=3?2+2(22+23+…+2n)-(2n+1)?2n+1

=6+2×4(1?n?1

)1?2

?(2n+1)?n+1

=2n+1(1-2n)-2

∴tn=2+(2n-1)2n+1

已知数列{an}的前n项和为sn,且满足sn=2an-n,(n∈n*)(ⅰ)求a1,a2,a3的值;(ⅱ)求数列{an}的通项

9楼:手机用户

(1)因为sn=2an-n,令n=1

解得a1=1,再分别令n=2,n=3,解得a2=3,a3=7.

(2)因为sn=2an-n,所专以sn-1=2an-1-(n-1),n≥2,n∈n*

两式相减

属得an=2an-1+1

所以an+1=2(an-1+1),n≥2,n∈n*

又因为a1+1=2,所以an+1是首项为2,公比为2的等比数列

所以an+1=2n,所以an=2n-1.

(3)因为bn=(2n+1)an+2n+1,

所以bn=(2n+1)?2n

所以tn=3×2+5×22+7×23+…+(2n-1)?2n-1+(2n+1)?2n①

2tn=3×22+5×23+…+(2n-1)?2n+(2n+1)?2n②

①-②得:-tn=3×2+2(22+23+…+2n)-(2n+1)?2n+1

=6+2×4?n

×21?2

?(2n+1)?n+1

=-2-(2n-1)?2n+1

所以tn=2+(2n-1)?2n+1若tn

?22n?1

≥128

则2+(2n?1)?n+1

?22n?1

≥128

即2n+1>27,解得n≥6,

所以满足不等式tn?2

2n?1

≥128的最小n值6.

若数列{an}的前n项和为sn,a1=2且sn+1=4an-2(n=1,2,3…).(i)求a2,a3;(ii)求证:数列{an-2an-1

10楼:神谷风子

(bai1)∵sn+1=4an-2(dun=1,2,3)zhi,∴s2=4a1-2=6.∴a2=s2-a1=4.(dao

回2分)

同理可得

答a3=8.(3分)

(2)∵sn+1=4an-2(n=1,2,3),∴sn=4an-1-2(n≥2).(4分)

两式相减得:an+1=4an-4an-1(5分)

变形得:an+1-2an=2an-4an-1=2(an-2an-1)(n≥2)

则:an-2an-1=2(an-1-2an-2)(n≥3)(6分)

an-2an-1=2(an-1-2an-2)=22(an-2-2an-3)=23(an-3-2an-4)

=2n-2(a2-2a1)∵a2-2a1=0∴an-2an-1=2n-2(a2-2a1)=0.

数列是常数列.(9分)

(3)由(ii)可知:an=2an-1(n≥2).

数列是以2为首项,以2为公比的等比数列.∴an=2n,(10分)∴an

?1an+1?1

=n?1

n+1?1=12

?n?1n?1

2<12.(12分)a?1

a?1+a?1a?1

++an?1a

n+1?1<12

+12++12=n2

.(14分)

11楼:时夏

(bai1)∵sn+1=4an-2(n=1,

2,3),∴dus2=4a1-2=6.∴a2=s2-a1=4.(zhi2分)dao

同理可回得a3=8.(3分)

(2)∵sn+1=4an-2(n=1,2,3),∴sn=4an-1-2(n≥2).(4分)

两式答相减得:an+1=4an-4an-1(5分)

变形得:an+1-2an=2an-4an-1=2(an-2an-1)(n≥2)

则:an-2an-1=2(an-1-2an-2)(n≥3)(6分)

an-2an-1=2(an-1-2an-2)=22(an-2-2an-3)=23(an-3-2an-4)

=2n-2(a2-2a1)∵a2-2a1=0∴an-2an-1=2n-2(a2-2a1)=0.

数列是常数列.(9分)

(3)由(ii)可知:an=2an-1(n≥2).

数列是以2为首项,以2为公比的等比数列.∴an=2n,(10分)∴an

?1an+1?1

=n?1

n+1?1=12

?n?1n?1

2<12.(12分)a?1

a?1+a?1a?1

++an?1a

n+1?1<12

+12++12=n2

.(14分)

已知数列an的前n项和为sn n 2+2n,求数列an

1楼 匿名用户 sn n 2 2n s n 1 n 1 2 2 n 1 n 2 2n 1 2n 2 n 2 1 an sn s n 1 n 2 2n n 2 1 2n 1 2楼 x暗夜 先令n 1,求出a1 s1则n 2时an sn sn 1再合并 已知数列 an 的前n项和sn n 2 2n求数列...

已知数列a1 1 2,sn n 2 an(n 1),设b1

1楼 匿名用户 sn是数列的前n项和吧 则 an sn s n 1 n 2 an n 1 2 a n 1 得 a n 1 an n 1 n 1 故 bn s n 1 sn n 1 2 a n 1 n 2 an n 1 n 1 n 2 n 2 1 n 2 n 2 因此t2 b1 b2 3 4 2 2 ...

设正数数列an的前n项和为Sn,且对任意的n N,Sn

1楼 杰伦 1 由题意得,2sn an 2 an , 当n 1时,2a1 a1 2 a1 ,解得a1 1, 1分 当n 2时,有2sn 1 an 1 2 an 1 , 式减去 式得,2an an 2 an 1 2 an an 1 于是,an 2 an 1 2 an an 1, an an 1 an ...