有理数,无理数的定义是什么,无理数的定义

2020-11-26 06:03:58 字数 5580 阅读 4684

1楼:阿瑟

无限不循环小数和开根开不尽的数叫无理数

整数和分数统称为有理数

数学上,有理数是两个整数的比,通常写作 a/b,这里 b 不为零。分数是有理数的通常表达方法,而整数是分母为1的分数,

当然亦是有理数。

数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο

无理数的定义

2楼:我是你男神

无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。 如圆周率、2的平方根等。 实数(real munber)分为有理数和无理数(irrational number) 有理数是一个整数 a 和一个非零整数 b 的比,通常写作 a/b。

包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。 这一定义在数的十进制和其他进位制(如二进制)下都适用。

无理数应满足三个条件:

①是小数;

②是无限小数;

③不循环.圆周率π=3.141592653……

3楼:匿名用户

无理数就是无限不循环小数.初中阶段主要有以下几种形式:

1.构造的数,如0.12122122212222...(相邻两个1之间依次多一个2)等;

2.有特殊意义的数,如圆周率π=3.141592653……,等;

3.部分带根号的数,如√2=1.41421...,√3=1.732...等;

4.部分三角函数值,如sin35°,tan40°等。

4楼:我是帅锅

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。

无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派**希伯索斯发现。

5楼:匿名用户

无理数也叫做无限不循环小数,不能写作两整数之比,所以,若将它写成小数形式,那么小数点之后的数字就会有无限个,并且不会循环,在数学中,无理数是所有不是有理数字的实数,这是无理数的定义。

6楼:我说二一

无理数,也称为无限不循环小数,不能写作两整数之比。

相关历史:

毕达哥拉斯发现毕达哥拉斯定理(勾股定理)后不久,公元前500年,毕达哥拉斯学派的**希帕索斯(hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆为数”(指有理数)的哲理大相径庭。

这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒。被毕氏门徒残忍地投入了水中杀害。科学史就这样拉开了序幕,却是一场悲剧。

具体实例:

如π、根号2、0.123537382...

7楼:

可以理解成无限不循环小数。不过实际应用起来会有困难,假如他的循环节很大,如100位,我们怎么去判断它是无限循环小数或无限不循环小数(无理数)呢?其实4楼的答案还不错的。

所以严格将来,无限不循环是无理数的性质(或特征),但我们往往无法用该性质去判断一个数是否是无理数。

实际上,我们证明一个无理数都是用反证法,假设某数是有理数(p/q为即约分数),再推导出矛盾,最后肯定其为无理数。

构造的数,如0.12122122212222...(相邻两个1之间依次多一个2)等,这类构造数成为魏尔斯特拉斯数,这不光是个无理数,还是超越数。

还有一类是对数数loga(b),如log2(3),当然这是个超越数。

无理数有代数无理数和超越数之分。如[2^(1/4)+1]^(1/3)是代数无理数,而log3(4)是超越无理数。

8楼:失眠瞌睡虫

无理数无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。 如圆周率、2的平方根等。

9楼:匿名用户

无理数:就是无限不循环小数。无理数应满足三个条件:①是小数;②是无限小数;③不循环.圆周率π=3.141592653……

10楼:

无理数就是实数中非有理数的那些数:

而有理数呢就是能写成p/q,其中p属于整数,q属于正整数的那些数

11楼:暴风雪过后

无限不循环的数就是无理数

12楼:我爱林爽然

不可公度的数。最原始的定义。然后3楼上回答全对。4楼的回答很牵强,列举的那么多还不精确而且都可以用一句话概括:无限不循环小数!

13楼:匿名用户

无理数就是无限不循环小数

有理数和无理数的关系是怎样的?

14楼:梦色十年

有理数与无理数是并列关系。

有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

实数包括有理数和无理数。

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。

无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派**希伯索斯发现。

15楼:小白兔乖乖

有理数包含整数和自然数,有理数与无理数是并列关系,整数包括正整数,负整数,零和自然数。实数包括有理数和无理数。

无理数的和:可以为有理数,考虑互为相反数的无理数相加无理数的积:可以为有理数,两个相同的根数相乘无理数的除:

可以为有理数,两个相同的根数相除无理数的平方:可以为有理数,两个相同的根数相乘有理数和无理数的和:一定为无理数,必然有理数和无理数的差:

一定为无理数,必然有理数和无理数的积:两者都可;请考虑0有理数和无理数的商:两者都可;请考虑0

无理数的概念

16楼:流羽月下

无理数,即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等。

无理数的另一特征是无限的连分数表达式。传说中,无理数最早由毕达哥拉斯学派**希伯斯发现。他以几何方法证明无法用整数及分数表示。

而毕达哥拉斯深信任意数均可用整数及分数表示,不相信无理数的存在。但是他始终无法证明不是无理数,后来希伯斯将无理数透露给外人——此知识外泄一事触犯学派章程——因而被处死,其罪名等同于“渎神”。

17楼:匿名用户

无理数就是无限不循环的小数

有理数的定义是什么

18楼:拾方易网络科技

数学上,有理数是一个

整数a和一个非零整数b的比,例如3/8,通则为a/b,故又称作分数。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。

有理数的小数部分是有限或为无限循环的数。不是有理数的实数遂称为无理数,即无理数的小数部分是无限不循环的数。

有理数集可用大写黑正体符号q代表。但q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数、循环小数都可以写成分数的形式,这样的数称为有理数

19楼:东莞无尘烤箱

整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数(rational number)。有理数的小数部分有限或为循环。

不是有理数的实数遂称为无理数。

有理数为整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。

有理数的大小顺序的规定:如果a-b是正有理数,当a大于b或b小于a,记作a>b或b

有理数集与整数集的一个重要区别是,有理数集是密集的,而整数集不是稠密的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。

依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

无理数和有理数的定义

20楼:云南万通汽车学校

有理数:有理数分为正有理数,负有理数,0.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,只要是无限循环小数的都叫有理数.

如:3.12121212121212……

无理数:无限不循环小数.无理数应满足三个条件:①是小数;②是无限小数;③不循环.圆周率π=3.141592653……

21楼:随缘自适流浪者

根据是否可以用分数表示来区分

22楼:励桂花樊绫

无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。

如圆周率、2的平方根等。

实数(real

munber)分为有理数和无理数(irrationalnumber)

有理数是一个整数

a和一个非零整数

b的比,通常写作

a/b。

包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。

这一定义在数的十进制和其他进位制(如二进制)下都适用。

实数(real

munber)分为有理数和无理数(irrationalnumber)

23楼:鞠良骥文暄

有理数:能精确地表示为两个整数之比的数。包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)

无理数无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。

如圆周率、2的平方根等。

24楼:俞春雪佛田

有理数:能精确表示为两个数之比的数,也就是整数,小数,无限循环小数.

无理数;不能精确表示为两个数之比的数,也就是无限不循环小数.

有理数的定义。包括0吗?

25楼:匿名用户

有理数为整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

26楼:匿名用户

正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

怎样判断数的平方根是无理数还是有理数

1楼 匿名用户 能开得尽就是有理数咯,这个东西还是要靠算的,没有什么方法 2楼 兰汐心空 不一定的,可以看是否是某数的平方 怎么判断带根号的数是有理数还是无理数 3楼 离温景 想判断是无理数还是有理数,只需要看根号下的那个数字,是否为一个数的平方。 例如 根号九下的数字为9,9为3的平方,则是有理数...

无理数是不是单项式还是二次根式,二次根式是有理式还是无理式

1楼 橙那个青 是单项式,不一定是二次根式。 2楼 匿名用户 无限不循环小数叫做无理数,无理数不一定是二次根式,如 二次根式和整式有交集吗?分类原则是不重复,不遗漏。根号2是单项式是整式是二次根式不矛盾吗? 3楼 匿名用户 单独的一个数也是单项式 而根号下的数字也是二次根式 整式中分母没有字母即可 ...

如何用整数的唯一分解定理证明根号10是无理数

1楼 ok嬷嬷嬷哦 反证法 设p 5 n n是正的自然数 则5q 2 p 2 25n 2 这样q 2也能被5整除,q也能被5整除 因此p与q有公因子5。 这与p q互质相矛盾 从而 证明了根号5为无理数。 如何用算术基本定理证明根号10是无理数 2楼 匿名用户 设 10为有理数,不妨设 10 n m...