1楼:临溪客
因为sinx-xcosx是连续函数
,所以可以将0直接代入计算得到极限结果,答案为0.
另,如果函数是两项或者多项作加减运算的时候,是不能分别用等价无穷小替换的,这个一定要注意,千万不能!因为等价无穷小没有这个性质。
为提高答题人热情,满意请采纳哦,不懂请追问,谢谢。(其实是我快没热情了…………)
在计算极限的时候,什么情况下可以用等价无穷小替换?能说明原因吗?
2楼:我是一个麻瓜啊
等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不一定能随意单独代换或分别代换)。
求极限时,使用等价无穷小的条件:
1、被代换的量,在取极限的时候极限值为0;
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
独立的乘积的因子若是无穷小,可以用等价的无穷小替换。例如lim(x→0) sinx*tanx/x^2,这里的sinx,tanx都可以替换,如果是lim(x→0) (sinx-tanx)/x^3,分子的sinx,tanx都不能替换,可以化成lim(x→0) tanx(cosx-1)/x^3后,替换sinx与1-cosx。
扩展资料:当x→0时,等价无穷小:
(1)sinx~x
(2)tanx~x
(3)arcsinx~x
(4)arctanx~x
(5)1-cosx~1/2x^2
(6)a^x-1~xlna
(7)e^x-1~x
(8)ln(1+x)~x
(9)(1+bx)^a-1~abx
(10)[(1+x)^1/n]-1~1/nx(11)loga(1+x)~x/lna
3楼:孤翼之泪
独立的乘积的因子若是无穷小
,可以用等价的无穷小替换。例如lim(x→0) sinx*tanx/x^2,这里的sinx,tanx都可以替换,如果是lim(x→0) (sinx-tanx)/x^3,分子的sinx,tanx都不能替换,可以化成lim(x→0) tanx(cosx-1)/x^3后,替换sinx与1-cosx
高数求极限!为什么x趋向0负等于-1不是
1楼 风火轮 对于整体来说,x是负的,根号后面是正的,乘积必然是负数。或者把x放入根号下的时候要考虑到根号永远是正数,所以前面要添一个负号。 2楼 匿名用户 。。。。。注 因为x 0 即x是从0的左边靠近0,所以x 0 那么 x x x 高数求极限,为什么x 1是等于 ?是将 1直接带入的吗? 3楼...
lnx当x趋于0的时候的极限是什么?x趋于的时候极限
1楼 匿名用户 定义域为 0 ,所以x只能趋于0 ,此时lnx趋于 当x趋于 时,lnx也趋于 。 由定义域的范围,x不可能趋于0 和 。 2楼 花自無芯碎自憐 对于lnx,定义域是x 0, 所以 对于楼主的提问,必有x 因此 lim x lnx 方括号内的内容,应该在lim的下方 lnx x在x趋...
求高数解答:为什么lim e(x-1的左右极限是0和
1楼 匿名用户 上式 1 x 1 故极限是 0, 下式 1 x 1 故极限是 。 高数 左右极限 讨论lim x 0 1 e 1 x 1 e 1 x 的存在性 2楼 2015窃得 简单的讲数学中的e就是个数字,它的值约等于2 7182818284590452353602874713527 引入它的作...