1楼:匿名用户
|1+x^3=(x+1)(x^2-x+1)
用待定系数法:a/(x+1)+(bx+c)/(x^2-x+1)=1/(x+1)(x^2-x+1)
得a=1/3,b=-1/3,c=2/3
所以∫[1/(1+x^3)]dx =1/3∫(1/(x+1))dx-1/3∫((x-2)/(x^2-x+1))dx
其中1/3∫(1/(x+1))dx=1/3ln|x+1|+c
因为d(x^2-x+1)=(2x-1)dx,所以x-2=1/2(2x-1)-3/2
∫((x-2)/(x^2-x+1))dx=1/2∫(d(x^2-x+1)/(x^2-x+1))-3/2∫(1/(x^2-x+1))dx
其中∫(d(x^2-x+1)/(x^2-x+1))=ln|x^2-x+1|+c
∫(1/(x^2-x+1))dx=∫(dx/((x-1/2)^2+(根号3/2)^2))
因为∫(dx/(x^2+a^2))=(1/a)arctan(x/a)
所以∫(1/(x^2-x+1))dx=∫(dx/((x-1/2)^2+(根号3/2)^2))
=(2/根号3)arctan((x-1/2)/(根号3/2))+c
在乘上系数,整理∫[1/(1+x^3)]dx=1/3ln|x+1|-1/6|x^2-x+1|+(1/根号3)arctan((2x-1)/根号3)+c
求不定积分∫1/[1+e^x]^(1/2)dx求高手解题要步骤谢谢 20
2楼:所示无恒
^^d(e^x+1)^1/2=e^x/(2*(e^x+1)^1/2)
原式=∫(1/(e^x+1)^1/2)dx
=2*∫(1/(e^x+1)^1/2)*(e^x+1)^(1/2)/e^x)d(e^x+1)^1/2
=2∫1/e^xd(e^x+1)^1/2
令u=(e^x+1)^1/2
原式=2∫1/(u^2-1)du
=∫1/(u-1)-1/(u+1)du
=in|u-1|-in|u+1|+c
=in|((e^x+1)^1/2-1)/((e^x+1)^1/2+1)|+c
扩展资料:
不定积分方法
换元积分法可分为第一类换元法与第二类换元法。
一、第一类换元法(即凑微分法)
通过凑微分,最后依托于某个积分公式。进而求得原不定积分。
二、注:第二类换元法的变换式必须可逆,并且在相应区间上是单调的。
第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的式,有时也可以使用第二类换元法求解。常用的换元手段有两种:
1、 根式代换法,
2、 三角代换法。
在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。
链式法则是一种最有效的微分方法,自然也是最有效的积分方法,下面介绍链式法则在积分中的应用:
链式法则:
我们在写这个公式时,常常习惯用u来代替g,即:
如果换一种写法,就是让:
就可得:
这样就可以直接将dx消掉,走了一个捷径。
3楼:
第一类换元
法令t=[1+e^x]^(1/2),则x=ln(t-1),dx=2t/(t-1)dt
原式=∫(1/t)*[2t/(t-1)]dt=∫2/(t-1)dt
=∫[1/(t-1) -1/(t+1)]dt=ln(t-1) -ln(t+1)+c
=...
求不定积分∫[1/(1+x^3)]dx 要步骤
4楼:留秀云建鸟
^||1+x^3=(x+1)(x^2-x+1)
用待定系数法:a/(x+1)+(bx+c)/(x^2-x+1)=1/(x+1)(x^2-x+1)
得a=1/3,b=-1/3,c=2/3
所以∫[1/(1+x^3)]dx
=1/3∫(1/(x+1))dx-1/3∫((x-2)/(x^2-x+1))dx
其中1/3∫(1/(x+1))dx=1/3ln|x+1|+c
因为d(x^2-x+1)=(2x-1)dx,所以x-2=1/2(2x-1)-3/2
∫((x-2)/(x^2-x+1))dx=1/2∫(d(x^2-x+1)/(x^2-x+1))-3/2∫(1/(x^2-x+1))dx
其中∫(d(x^2-x+1)/(x^2-x+1))=ln|x^2-x+1|+c
∫(1/(x^2-x+1))dx=∫(dx/((x-1/2)^2+(根号3/2)^2))
因为∫(dx/(x^2+a^2))=(1/a)arctan(x/a)
所以∫(1/(x^2-x+1))dx=∫(dx/((x-1/2)^2+(根号3/2)^2))
=(2/根号3)arctan((x-1/2)/(根号3/2))+c
在乘上系数,整理∫[1/(1+x^3)]dx=1/3ln|x+1|-1/6|x^2-x+1|+(1/根号3)arctan((2x-1)/根号3)+c
5楼:童云德庆戌
^∫(1-x)/(1+x^3)dx
这个就需要用因式分解
1+x^3=(1+x)(x^2-x+1)
将(1-x)化成这两个因式的加和
(1-x)=(2/3)(x^2-x+1)-(1/3)(2x-1)(x+1)
∫(1-x)/(1+x^3)dx
=∫[(2/3)(x^2-x+1)-(1/3)(2x-1)(x+1)]/(1+x^3)
dx=(2/3)∫1/(x+1)dx
-(1/3)
∫[(2x^2-2x+2)+(3x-3)]/(x^2-x+1)
dx=(2/3)
ln(x+1)-(2/3)x+(1/2)∫1/(x^2-x+1)d(x^2-x+1)+
(√3/3)arctan[(2x-1)/√3]
=(2/3)
lnix+1i-(2/3)x+(1/2)lnix^2-x+1i+(√3/3)arctan[(2x-1)/√3]+c
解答完毕,请指教,真麻烦啊呀
急求不定积分∫[1/(1+x^3)]dx
6楼:匿名用户
-1/6*log(x^2-x+1)+1/3*3^(1/2)*atan(1/3*(2*x-1)*3^(1/2))+1/3*log(x+1)+c
绝对正确。matlab做的。
如图,求不定积分∫1/[(1+x^2)^3/2]dx,请问图中结果怎么算来的,求详细解题步骤。
7楼:匿名用户
首先考虑换元法
令x=tant
则dx=(sect)^2 dt
所以原式=∫(sect)^(-3) * (sect)^2 dt'
=∫(sect)^(-1) dt
=∫cost dt
=sint + c
=tant / √(1+(tant)^2) + c=x/√(1+x^2) + c
扩展资料:性质:积分公式
注:以下的c都是指任意积分常数。
8楼:体育wo最爱
^∫[1/(1+x)^(3/2)]dx
令x=tanθ
,则1+x=1+tanθ=secθ,dx=d(tanθ)=secθdθ
原式=∫[(1/secθ)·secθ]dθ=∫(1/secθ)dθ
=∫cosθdθ
=sinθ+c
因为tanθ=x,所以:sinθ=x/√(1+x)所以原式=x/√(1+x)+c
9楼:皮杰圈
嘴不饶人心必善,心不饶人嘴必甜;心善之人敢直言,嘴甜之人藏谜奸;宁交一帮抬
求1/(1+x^3)的不定积分
10楼:吾乃上古曲奇
详细的解题过程如下:
拓展内容:
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 f ,即f ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中f是f的不定积分。
这样,许多函数的定积分的计算就可以简便地通过求不定积分来进行。
设f(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数f(x)+ c(c为任意常数)叫做函数f(x)的不定积分,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=f(x)+c。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,c叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。
11楼:匿名用户
1/(1+x^3)的不定积分求法如下:
1+x^3=(x+1)(x^2-x+1)
用待定系数法:a/(x+1)+(bx+c)/(x^2-x+1)=1/(x+1)(x^2-x+1)
得a=1/3,b=-1/3,c=2/3
所以∫[1/(1+x^3)]dx =1/3∫(1/(x+1))dx-1/3∫((x-2)/(x^2-x+1))dx
其中1/3∫(1/(x+1))dx=1/3ln|x+1|+c
因为d(x^2-x+1)=(2x-1)dx,所以x-2=1/2(2x-1)-3/2
∫((x-2)/(x^2-x+1))dx=1/2∫(d(x^2-x+1)/(x^2-x+1))-3/2∫(1/(x^2-x+1))dx
其中∫(d(x^2-x+1)/(x^2-x+1))=ln|x^2-x+1|+c
∫(1/(x^2-x+1))dx=∫(dx/((x-1/2)^2+(根号3/2)^2))
因为∫(dx/(x^2+a^2))=(1/a)arctan(x/a)
所以∫(1/(x^2-x+1))dx=∫(dx/((x-1/2)^2+(根号3/2)^2))
=(2/根号3)arctan((x-1/2)/(根号3/2))+c
在乘上系数,整理∫[1/(1+x^3)]dx=1/3ln|x+1|-1/6|x^2-x+1|+(1/根号3)arctan((2x-1)/根号3)+c
拓展内容:
1、不定积分的基本概念:
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 f ,即f ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中f是f的不定积分。
这样,许多函数的定积分的计算就可以简便地通过求不定积分来进行。
设f(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数f(x)+ c(c为任意常数)叫做函数f(x)的不定积分,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=f(x)+c。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,c叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。
由定义可知:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数c,就得到函数f(x)的不定积分。
2、不定积分的主要性质:
1、函数的和的不定积分等于各个函数的不定积分的和;
2、求不定积分时,被积函数中不为零的常数因子可以提到积分号外面来;
求不定积分x 1+x)dx,求∫1/√x(1+√x)dx这个不定积分的解答过程
1楼 稻壳张 题目不太明确,如果被积函数是 sqrt x 1 x,那么太简单了。我想你的被积函数可能是 sqrt x 1 x 则结果是 看了你的补充,只有分子带根号,那么 令u sqrt x 2楼 匿名用户 根据你的式子,下面按 x 1 x dx计算 解 令x t t 0 得 x 1 x dx t ...
求出lnlnx x的不定积分,求不定积分#url# dx
1楼 我是一个麻瓜啊 lnlnx xdx ln lnx lnx lnx c。c为积分常数。 解答过程如下 lnlnx xdx ln lnx d lnx lnx的导数是1 x ln lnx lnx lnxdln lnx ln lnx lnx lnx 1 lnxd lnx ln lnx lnx d ln...
(1+1-x 2)dx,求不定积分
1楼 drar 迪丽热巴 解题过程如下图 在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 f ,即f f。 不定积分和定积分间的关系由微积分基本定理确定。其中f是f的不定积分。 常用积分公式 1 0dx c 2 x udx x u 1 u 1 c3 1 xdx ln...