极限的定义是怎么来的

2021-03-05 08:13:36 字数 4534 阅读 5401

1楼:匿名用户

由来:与一切科学的思想方法一样,极限思想也是社会实践的大脑抽象思维的产物。极限的思想可以追溯到古代,例如,祖国刘徽的割圆术就是建立在直观图形研究的基础上的一种原始的可靠的“不断靠近”的极限思想的应用;

古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对’无限‘的恐惧”,他们避免明显地人为“取极限”,而是借助于间接证法——归谬法来完成了有关的证明。

到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中,改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。如此,他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。

扩展资料

极限思想的进一步发展是与微积分的建立紧密相联系的。16世纪的欧洲处于资本主义萌芽时期,生产力得到极大的发展,生产和技术中遇到大量的问题。

开始人们只用初等数学的方法已无法解决,要求数学突破’只研究常量‘的传统范围,而寻找能够提供能描述和研究运动、变化过程的新工具,是促进’极限‘思维发展、建立微积分的社会背景。

起初牛顿和莱布尼茨以无穷小概念为基础建立了微积分,后来因遇到逻辑困难,所以在他们的晚期都不同程度地接受了极限思想。

2楼:翱翔四方

因为cosh小于等于1,那么1-cosh永远不会出现在0的左侧,也就是0的左导数,不确定,谢谢,不懂的话可以继续问我。

3楼:小坚果

极限的产生与发展

(1)由来

与一切科学的思想方法一样,极限思想也是社会实践的大脑抽象思维的产物。极限的思想可以追溯到古代,例如,祖国刘徽的割圆术就是建立在直观图形研究的基础上的一种原始的可靠的“不断靠近”的极限思想的应用;古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对’无限‘的恐惧”,他们避免明显地人为“取极限”,而是借助于间接证法——归谬法来完成了有关的证明。

到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中,改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。如此,他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。

(2)发展

极限思想的进一步发展是与微积分的建立紧密相联系的。16世纪的欧洲处于资本主义萌芽时期,生产力得到极大的发展,生产和技术中遇到大量的问题,开始人们只用初等数学的方法已无法解决,要求数学突破’只研究常量‘的传统范围,而寻找能够提供能描述和研究运动、变化过程的新工具,是促进’极限‘思维发展、建立微积分的社会背景。

起初牛顿和莱布尼茨以无穷小概念为基础建立了微积分,后来因遇到逻辑困难,所以在他们的晚期都不同程度地接受了极限思想。牛顿用’路程的改变量δs‘与’时间的改变量δt‘之比 “

” 表示运动物体的平均速度,让δt无限趋近于零,得到物体的瞬时速度,并由此引出导数概念和微分学理论。他意识到极限概念的重要性,试图以极限概念作为微积分的基础,他说:“两个量和量之比,如果在有限时间内不断趋于相等,且在这一时间终止前互相靠近,使得其差小于任意给定的差,则最终就成为相等”。

但牛顿的极限观念也是建立在几何直观上的,因而他无法得出极限的严格表述。牛顿所运用的极限概念,只是接近于下列直观性的语言描述:“如果当n无限增大时,

无限地接近于常数a,那么就说

以a为极限。

正因为当时缺乏严格的极限定义,微积分理论才受到人们对于科学理论的怀疑与攻击,例如,在物理学的’瞬时速度‘概念,究竟δt(变化量)是否等于零?如果说是零,(因为真理如果被无限扩大其适用范围也会变为错误):怎么能用它去作除法呢?

(其实变化量不可能为0)。但是人们认为,如果它不是零,计算机和函数变形时又怎么能把包含着它的那些“微小的量”项去掉呢?当时人们不理解,想完全没有一点点误差地进行变量的计算而导致打击认为发生悖论,这就是数学史上所说的无穷小悖论产生的原因。

英国哲学家、大主教贝克莱对微积分的攻击最为激烈,他说微积分的推导是“分明的诡辩”。科学发展的历史和成功表明他的观点是错的。

贝克莱之所以激烈地攻击微积分,一方面是为宗教服务,另一方面也由于当时的微积分缺乏牢固的理论基础,和变通的解决办法,连名人牛顿也无法摆脱‘极限概念’中的混乱。这个事实表明,弄清“极限”概念,它是一个动态的量的无限变化过程,微小的变量趋势方向上当然可以极为精密地近似等于某一个常量。这是建立严格的微积分理论的思想基础,有着认识论上的科学研究的工具的重大意义。

(3)完善

极限思想的完善,与微积分的严格化的密切联系。在很长一段时间里,微积分理论基础的问题,许多人都曾尝试“彻底满意”地解决,但都未能如愿以偿。这是因为数学的研究对象已从常量扩展到变量,而人们习惯于用不变化的常量去思维,分析问题。

对“变量”特有的概念理解还不十分清楚;对“变量数学”和“常量数学”的区别和联系还缺乏了解;对“有限”和“无限”的对立统一关系还不明确。这样,人们使用习惯的处理常量数学的传统思想方法,思想僵化,就不能适应‘变量数学’的新发展。古代的人们习惯用旧概念常量就说明不了这种 [“零”与“无限靠近零的非零数值”之间可以人为的微小距离跳跃到相等的相互转化]的科学性结论的辩证关系。

到了18世纪,罗宾斯、达朗贝尔与罗依里埃等人先后明确地表示必须将极限作为微积分的基础概念,并且都对极限作出过,各自的定义。其中达朗贝尔的定义是:“一个量是另一个量的极限,假如第二个量比任意给定的值更为接近第一个量”,其描述的内涵接近于‘极限的正确定义;然而,这些人的定义都无法摆脱对几何直观的依赖。

观点也只能如此,因为19世纪以前的算术和几何概念,大部分都是建立在几何量的概念上的。其实,“具象化”不是思维落后的代名词,对于几何直观的研究不是思维落后的代名词,因为在今天仍然是可以用函数’映射‘为图形,来研究较为复杂的趋势问题。如果有趋势则极限概念能够成立。

例如“具象化”图形代替函数可绑架直观地证明某一个没有规律可描述的向用户久攻不下的命题不能成立;(或另外一个函数却能够成立), 再分别作具体的“符号方式”的数学证明。

首先用极限概念给出‘导数’的正确定义的是捷克数学家波尔查诺,他把函数f(x)的导数定义为差商

的极限f'(x),他强调指出f'(x)不是两个零的商。波尔查诺的思想是有价值的,但关于‘极限的本质’他仍未描述清楚。

到了19世纪,法国数学家柯西在前人工作的基础上,比较完整地阐述了“极限概念”及其理论,他在《分析教程》中指出:“当一个变量逐次所取的值无限趋于一个定值,最终使变量的值和该定值之差要多小就多小,这个定值就叫做所有其他值的极限值,特别地,当一个变量的数值(绝对值)无限地减小使之收敛到极限0,就说这个变量成为无穷小。”

柯西把无穷小视为“以0为极限的变量”,这就正确地确立了“无穷小”概念为“似零不是零去却可以人为用等于0处理”的办法,这就是说,在变量的变化过程中,它的值实际上不等于零,但它变化的趋向是向“零”,可以无限地接近于零。那么人们就可以用“等于0”来处理,是不会产生错误结果的。

柯西试图消除极限概念中的几何直观,(但是“几何直观”不是消极的东西,我们研究函数时也可以可以发挥想像力——“动态趋势的变量图像,假设被放大到巨大的天文倍数以后,我们也会永远不能看到变量值‘重合于0”,所以用不等式表示会更加“明确”)作出极限的明确定义,然后去完成牛顿的愿望。但柯西的叙述中还存在描述性的词语,如“无限趋近”、“要多小就多小”比较通俗易懂的描述,对于概念的理解比较容易,因此其定义还保留着几何和物理的直观痕迹,一分为二,直观痕迹比较多也会有好处,但是结合下面的抽象定义可更加容易理解‘极限’的概念。

为了排除极限概念中的直观痕迹,维尔斯特拉斯提出了极限的静态的抽象定义,给微积分提供了严格的理论基础。所谓

,就是指:“如果对任何

,总存在自然数n,使得当

时,不等式

恒成立”。

这个定义,借助不等式,通过ε和n之间的关系,定量地、具体地刻划了两个“无限过程”之间的联系。因此,这样的定义应该是目前比较严格的定义,可作为科学论证的基础,至今仍在数学分析书籍中使用。在该定义中,涉及到的仅仅是‘数及其大小关系’,此外只是用给定、存在、任何等词语,已经摆脱了“趋近”一词,不再求助于运动的直观。

(但是理解’极限‘概念不能够抛弃‘运动趋势’去理解, 否则容易导致’把常量概念不科学地进入到微积分’领域里)

常量可理解为‘不变化的量’。微积分问世以前,人们习惯于用静态图像研究数学对象,自从解析几何和微积分问世以后,考虑‘变化量’的运动思维方式进入了数学领域,人们就有数学工具对物理量等等事物变化过程进行动态研究。之后,维尔斯特拉斯,建立的ε-n语言,则用静态的定义描述变量的变化趋势。

这种“静态——动态——静态”的螺旋式的上升演变,反映了数学发展的辩证规律。

极限的定义是怎么来的……

4楼:推到然后

1.是指无限趋近于一个固定的数值。

2.数学名词。在高等数学中,极限是一个重要的概念。

  极限可分为数列极限和函数极限.   学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。

所以为了要利用代数处理代表无限的量,於是精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,而引入了一个过程任意小量。就是说,除数不是零,所以有意义,同时,这个过程小量可以取任意小,只要满足在δ的区间内,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能。

这个概念是成功的。

极限的性质

性质1 唯一性   性质2 有界性   性质3 保号性   性质4 夹逼准则

你还是想知道 历史 谁发明的?

求解极限定义中的nN是啥意思,极限定义里的大n小n 怎么回事

1楼 梦想队员 就是n项之后满足条件就行。这体现了极限的本质,反映了后面无穷多项,不管前有限项是什么。 极限定义里的大n小n 怎么回事 2楼 子聃 极限定义里的大n是最大极极限,小n则是最小极限。 数列极限定义中n的作用是什么? 3楼 夏末的晨曦 数列xn的极限定义中,n的作用是指 对于所有比n大的...

定积分的定义求n项和的极限是什么意思

1楼 匿名用户 定积分的定义为 f x dx lim f i xi 即是求f x 曲线在 a b 内与坐标轴所围成的曲边梯形的面积。其求法如下 1 分割 在 a b 内插入n 1个分点 2 取近似 用小矩形面积代替小曲边梯形的面积即为 ai f i xi 3 作和 将n个小矩形面积相加,就得到所求曲...

数列极限定义中"为什么要限制n》

1楼 安克鲁 解答 1 n是项数。是我们解出来的项数,从这一项 第n项 起,它后面的每一项 的值与极限值之差的绝对值小于任何一个给定的数 。 2 由于 是任给的一个很小的数,n是据此算出的数。可能从第n项起,也可 能从它后面的项起,数列的每一项之值与极限值之差的绝对值小于 。 是理论上假设的数,n是...