向量乘法原理向量的乘除法怎么运算

2021-03-04 10:37:45 字数 5782 阅读 8836

1楼:天下相思

原理:两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(竖起的大拇指指向是c的方向)

向量积|c|=|a×b|=|a||b|sin。即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。

几何意义:

叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。

扩展资料

向量的混合积:

设有三个向量:a=(a1、a2、a3), b=(b1、b2、b3),c=(c1、c2、c3),则称(aⅹb)c为向量a,b,c的混合积,记作[abc]。根据行列式的运算性质,可得向量的混合积满足轮换性,即(aⅹb)c=(bⅹc)a=(cⅹa)b。

向量混合积的几何应用:

a、b、c共面[abc]=0存在不全零的数λ、μ、γ,使得λa+μb+γc=0。

2楼:匿名用户

向量乘法包括:向量积,数量积

向量积也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个伪向量而不是一个标量。并且两个向量的叉积与这两个向量都垂直。

定义:两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。叉积可以被定义为:

在这里θ表示和之间的角度(0° ≤ θ ≤ 180°),它位于这两个矢量所定义的平面上。而n是一个与和均垂直的单位矢量。

向量由向量空间的方向确定,即按照给定直角坐标系 (i, j, k) 的左右手定则。若 (i, j, k) 满足右手定则,则 (a, b, a × b) 也满足右手定则;或者两者同时满足左手定则。

几何意义:叉积的长度 |a × b| 可以解释成以 a 和 b 为边的平行四边形的面积。进一步就是说,三重积可以得到以 a,b,c 为边的平行六面体的体积。

向量的数量积

已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,点积.记作ab,θ是a与b的夹角(0° ≤ θ ≤ 180°),|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。

ab的几何意义:数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。

向量的数量积的性质

(1)a·a=∣a|≥0

(2)a·b=b·a

(3)k(ab)=(ka)b=a(kb)

(4)a·(b+c)=a·b+a·c

(5)a·b=0a⊥b

3楼:偷偷爱着你

向量乘法分向量积,数量积

1.向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:

∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b平行,则a×b=0,a、b垂直,则a×b=|a|*|b|(此处与数量积不同,请注意)。

向量积即两个不共线非零向量所在平面的一组法向量。

运算法则:运用三阶行列式

设a,b,c分别为沿x,y,z轴的单位向量

a=(x1,y1,z1)b=(x2,y2,z2)则a*b=

a b c

x1 y1 z1

x2 y2 z2

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a平行b〈=〉a×b=0

向量的向量积运算律

a×b=-b×a

(λa)×b=λ(a×b)=a×(λb)

a×(b+c)=a×b+a×c.

(a+b)×c=a×c+b×c.

上两个分配律分别称为左分配律和右分配律。在演算中应注意不能交换“×”号两侧向量的次序。

如:a×(2b)=b×(2a)和c×(a+b)=a×c+b×c都是错误的!

注:向量没有除法,“向量ab/向量cd”是没有意义的。

2.数量积

定义:已知两个非零向量a,b。作oa=a,ob=b,则角aob称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉(依定义有:

cos〈a,b〉=a·b / |a|·|b|);若a、b共线,则a·b=±∣a∣∣b∣。

向量的数量积的坐标表示:a·b=x·x'+y·y'。

向量的数量积的运算律

a·b=b·a(交换律)

(λa)·b=λ(a·b)(关于数乘法的结合律)

(a+b)·c=a·c+b·c(分配律)

向量的数量积的性质

a·a=|a|的平方。

a⊥b〈=〉a·b=0。

|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)

向量的乘除法怎么运算?

4楼:新光明张老师

你好!中学阶段只需要学会向量的乘法原理,

a向量*b向量=a的模*b的模*cos(a,b向量的夹角)或者在坐标中,对应坐标相乘再求和,

如a(2,3),b(2,4),

那么a*b=2*2+3*4=16,

向量的出发在中学阶段你们不需要学习,

最多知道平行向量间的倍数关系,如a向量=5倍b向量,这种。

请大侠解释一下向量积右手定则如何用,我实在不懂手要怎么转

5楼:微凉的翡冷翠

向量积右手定则使用方法如下:

右手除姆指外的四指合并,姆指与其他四指垂直,四指由a向量的方向握向b向量的方向,这时姆指的指向就是a,b向量向量积的方向。就是说,ab向量积的方向垂直于ab向量确定的平面。如下图所示:

向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。

其应用也十分广泛,通常应用于物理学光学和计算机图形学中。

扩展资料

向量积的代数规则

1、反交换律:a×b=-b×a

2、加法的分配律:a×(b+c)=a×b+a×c。

3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。

4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。

5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的r3构成了一个李代数。

6、两个非零向量a和b平行,当且仅当a×b=0。

6楼:匿名用户

没有一张jpg不能解决的问题!

7楼:匿名用户

右手除姆指外的四指合并

,姆指与其他四指垂直,四指由a向量的方向握向b向量的方向,这时姆指的指向就是a,b向量向量积的方向。就是说,ab向量积的方向垂直于ab向量确定的平面。

向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。

其应用也十分广泛,通常应用于物理学光学和计算机图形学中。

物理中的右手定则:用右手握螺线管,让四指弯向与螺线管的电流方向相同,大拇指所指的那一端就是通电螺线管产生的磁场的n极。直线电流的磁场的话,大拇指指向电流方向,另外四指弯曲指的方向为磁感线的方向(磁场方向或是小磁针北极所指方向或是小磁针受力方向)。

后来有推广到了数学向量中。

8楼:匿名用户

你完全搞错了!平面内两个向量积数值等于这两个向量为两边构成的平行四边形面积即a.bsinα,方向指向平面指向垂直两向量所在平面。

如三维空间中,向量在xy平面,z轴就是它方向,如a向b方向运动为顺时针方向,右手竖直开掌,四指方向为运动方向,那么大拇指方向为指向z轴方向就是积向量方向,如运动或转动方向为逆时针,四指指向逆时针方向,大拇指自然变成了z轴负方向!

9楼:匿名用户

翻开那本绿绿的高等数学下册,然后***。

10楼:匿名用户

可以想象一个特例,a是x轴,b是y轴,那么a->b的规则和x->y的规则是一样的,因为z轴=x轴叉乘y轴的。而坐标系是分左手坐标系和右手坐标系的,axb在不同坐标系中,方向也不同。在左手坐标系中,就用左手定则判断,在右手坐标系中,就用右手定则判断。

11楼:多悠悠的

物理里面也有类似的应用哦~

12楼:转行天

逆时针时是z轴正方向吧

向量叉乘公式是什么?

13楼:瘾猎

叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。

|向量c|=|向量a×向量b|=|a||b|sin

向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此向量的外积不遵守乘法交换率,因为向量a×向量b= -

向量b×向量a

在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。

将向量用坐标表示(三维向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),

则向量a×向量b=

| i j k |

|a1 b1 c1|

|a2 b2 c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)

(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。

数学中,既有大小又有方向且遵循平行四边形法则的量叫做向量(vector)。

向量向量

有方向与大小,分为自由向量与固定向量。

数学中,把只有大小但没有方向的量叫做数量,物理中称为标量。例如距离、质量、密度、温度等。

("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)

在编程语言中,也存在向量。向量有起点,有方向。常用一个带箭头的线段表示。

向量叉乘公式是什么啊

14楼:人偶祭祀

叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。

|向量c|=|向量a×向量b|=|a||b|sin向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此 向量的外积不遵守乘法交换率,因为向量a×向量b= -向量b×向量a

在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。

将向量用坐标表示(三维向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),则 向量a×向量b=

| i j k |

|a1 b1 c1|

|a2 b2 c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。

向量的加减乘除运算公式,向量的加减乘除运算法则是什么

1楼 匿名用户 http wenku baidu link url 9pd9n vjnhol1opz6bq5lb 53sfuv l8iolxk5xfizsqncjw3z5jvwdhpk gdu2oxxw zsnsisyne86ur6ydi8wq1w79t zqjlu ibqsfmk 2楼 霍兴有蔺卿...

平面向量的数乘运算,平面向量的数乘运算,,,,求解题过程

1楼 伟琛丽从依 从形式上来说,平面向量的表示由于可以看成一个矩阵,所以存在数乘运算。 一个向量a乘以常数c,得到的是ca,它的含义是,1 c 0 ca是与a同向的,并且模是向量a的c倍的一个向量2 c 0 ca是与a反向的,并且模是向量a的 c 倍的一个向量3 c 0 ca是零向量,零向量的意义是...

两个三维向量叉乘怎么算,向量叉乘怎么计算

1楼 匿名用户 a1 a2 a3 x b1 b2 b3 a2b3 a3b2 a3b1 a1b3 a1b2 a2b1 向量积, 数学中又称外积 叉积,物理中称矢积 叉乘,是一种在 向量空间中向量的 二元运算。与 点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。 向...