1楼:匿名用户
连续不一定可导,可导一定连续.连续是可导的必要不充分条件.不知道这样解释你能明白吗?
导数存在和导数连续有什么区别??
2楼:云帆
一、满足条件不同
1、导数
存在:只要存在左导数或者右导数就叫导数存在。
2、可导:左导数和右导数存在并且左导数和右导数相等才能叫可导。
二、函数连续性不同
1、导数存在:导数存在的函数不一定连续。
2、可导:可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
三、曲线形状不同
1、导数存在:曲线是不连续的,存在尖点或断点。
2、可导:可导的曲线形状是光滑的,连续的。没有尖点、断点。
3楼:
这其实是连续的一个证明问题左右
极限相等,则偏导存在。但此时的极限不一定等于该点的导数值,明白吗?证明偏导数连续,则是要证明左右极限相等并且要等于该点的偏导数值。
也就是说:在那点的偏导数等于左右极限这句话是对的。
左右导数存在,则一定连续吗
4楼:半落丶
所以,只要左右导数存在(相不相等无所谓)就一定连续。
最后,不接受字迹吐槽- -。
5楼:久独唯闻落叶声
一定连续。(连续与可导千万不要弄混了,左右导数存在与可导不可导没有关系)
由此看出,单侧导数存在,那么在此点一定有定义即上面所说的f(x0),又因为函数映射是一一对应关系,即一个x对应一个y ,那么不可能存在在x0处出现两个因变量,否则它不是函数,也就说在此点连续,这个可以证明的,你可以用任意数ε和△x的关系去证明。
由此我们可以看出 可导一定连续,且可导时左导数一定等于右导数并在此点连续,不连续一定不可导。
如果左导数不等与右导数,两者都存在是只能说明此点不可导,但是一定连续!
6楼:黎祖南
函数在x点左右导数存在,则一定连续吗
该点有定义,则为正确.当左右导数不相等的时候也可以连续.比如y=|x|在x=0这一点,答案是肯定的.
是正确的.(因为单边导数要求该点和单边邻域连续,而左右导都存在,故两边连续.可严格用n-以普西龙语言证明)若该点无定义,则为假命题.
依然上述函数,x=0点无定义,则为假.希望我的回答对您有所帮助
7楼:晴毅
函数f(x)在x0连续,当且仅当f(x)满足以下三个条件:
①f(x)在x0及其左右近旁有定义;
②f(x)在x0的极限存在;
③f(x)在x0的极限值与函数值f(x0)相等。
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
扩展资料关于函数的可导导数和连续的关系:
1、连续的函数不一定可导。
2、可导的函数是连续的函数。
3、越是高阶可导函数曲线越是光滑。
4、存在处处连续但处处不可导的函数。
左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。
高数下册二元函数偏导数存在和偏导数连续有什么区别,他
1楼 匿名用户 偏导数存在未必连续,连续必存在。几何意义分别是偏导数图形是否连续,就是没有突变 偏导数存在和偏导数连续是什么关系高数 2楼 匿名用户 偏导数连续偏导数指的是偏导数不仅存在而且连续。 3楼 匿名用户 偏导数连续是偏导数存在的充分条件 4楼 精锐教育彭老师 在一元情况下,可导一定连续,反...
函数二阶可导和函数二阶连续可导的区别
1楼 常常喜乐 区别 1 函数 二阶可导是指函数具有二阶导数,但是二阶导数的连续性无法确定 2 函数二阶连续可导是指函数具有二阶导数,并且它的二阶导数是连续的。 2楼 大帆打饭 你这是在瞎说。二节可导只能说明一阶导数连续。二阶连续可导说明二阶导数也连续。 3楼 匿名用户 区别是二阶可导只能说明二阶导...
多元函数连续,一阶导数连续,那么二阶函数连续
1楼 匿名用户 我个人觉得,你这个问题可能被网友理解出了两个意思,所以回答不尽一致。 第一种理解 函数在某点二阶导数存在,那么函数本身在这点的领域上是否存在一阶导数。 对于这种理解,可以将命题转化为问 函数某点的二阶导存在,那么此函数在这点的领域上是否可导?这个回答是一定存在。 在因为在这点的二阶导...