1楼:1111去
用不定方程的方法来做。
————————————————————————————————先解第一个方程。
71014x≡6(mod 19)
因为71014≡11(mod 19)
所以11x≡6(mod 19)
11x=19a+6
11x≡19a+6(mod 11)
0≡8a+6(mod 11)
11b=8a+6
11b≡8a+6(mod 8)
3b≡0+6(mod 8)
b≡2(mod 8)
b=2+8p
代入上面式子,11(2+8p)=8a+6,a=11p+2代入上面式子,11x=19(11p+2)+6,于是x=19p+4————————————————————————————————再解第二个方程。
x≡71019(mod 23)
71019≡18(mod 23)
因而x≡18(mod 23)
于是,x=23q+18
————————————————————————————————联合两个解:
x=19p+4=23q+18
同时取模19,
19p+4≡23q+18(mod 19)
0+4≡4q+(-1)(mod 19)
4q≡5(mod 19)
4q=19c+5
4q≡19c+5(mod 4)
0≡-c+1(mod 4)
c≡1(mod 4)
于是,c=4r+1,代入,
4q=19(4r+1)+5
q=19r+6,代入,
x=23(19r+6)+18
x=437r+156
————————————————————————————————于是答案即为
x≡156(mod 437)
有更方便的方法,例如孙子定理,套公式即可。那个没啥意思感觉。
---------------------------【经济数学团队为你解答!】欢迎追问。
2楼:数学好玩啊
原方程组等价于x=6(mod11) ,x=3(mod 8),x=11(mod4) ,x=11(mod 5)
注意到x=3(mod 8)是x=11(mod4)的解的真子集,故等价于
x=6(mod11) ,x=3(mod 8),x=11(mod 5)
由于11,8,5两两互质,所以剩下的工作交给中国剩余定理
最后得到171是一个解,故通解为x=171(mod440)
一般结论:对于模不互质的情形,首先要检验,即任意两个有公约数的模对于最大公约数是否同余
如本题(8,20)=4,且3=11(mod4),符合
其次,列出等价同余方程组,其原则为所有的模数分解质因子为标准形,然后取每个质因子的最高次幂,并写出相应同余方程
本题,11是质数,8=2^3,20=2^2*5,因此模数分别取11,8,5对应同余方程为
x=6(mod11) ,x=3(mod 8),x=11(mod 5)
最后,由于每个同余方程的模取自不同质数的幂,故互质,所以用中国剩余定理得到一个特解,从而得到通解
解这个同余方程组,求详细过程,(4) 100
3楼:匿名用户
解31+41m=59+26n,可得41m=28+26n,41m′=14+13n,可得2m′=m≡1(mod13),最小m=14,x=31+41*14+41*26*k,k∈z
4楼:甘肃数学陆春
上一次同余式组(4)等价于下列方程:
x==3(mod5),
x==3(mod7),
x==3(mod11);
即x通式==3(mod5ⅹ7ⅹ11)==3mod385
求解二元一次方程组格式,二元一次方程组,要有格式,求解
1楼 匿名用户 概念如果一个方程含有两个 未知数 并且所含未知项都为1次方 那么这个整式方程就叫做二元一次方程 有无穷个解 若加条件限定有有限个解 二元一次方程组 则一般有一个解 有时没有解 有时有无数个解 如一次函数中的平行 二元一次方程的一般形式 ax by c 0其中a b不为零 这就是二元一...
高数求高阶微分方程解!求详细过程
1楼 匿名用户 令p y dy dx, 则y dp dx dp dy dy dx pdp dypp p 2 2y 线性通解p ce y 2 特解p 4 y 4 通解dy dx p ce y 2 4 y 4再分离变量求y即可 2楼 12345啦啦哦 y x 2 2x 2 令y一阶倒数为p就可以了 高数...
两个无解方程能否称之为同解方程?为什么?详细
1楼 匿名用户 同解方程的概念 解集相同的两个方程叫做同解方程 或者说,如果第一个方程的解都是第二个方程的解,并且第二个方程的解也都是第一个方程的解,那么这两个方程叫做同解方程 我们约定,两个无解方程也是同解方程 例如,方程 2x 1 5, 2x 6 的解集都是 3 ,它们是同解方程 又如,方程 x...