1楼:匿名用户
在几何意义方面:
弧长积分可以计算弧长曲线的长度,∮ds = l的长度
坐标积分没有直接的几何用法,一般只有物理上的
但是联系格林公式的话,可做坐标积分和二重积分之间的桥梁
二重积分的几何意义是计算平面面积的
所以坐标积分的形式(1/2)∮ xdy-ydx就是计算平面面积
在物理意义方面:
弧长积分可以计算曲线的质量,转动惯量等等
坐标积分可以计算变力做功
下面是从其他地方摘录回来的解释:
说简单点:对弧长的积分只是对“弧长的大小积分”,而对坐标的积分则包含对“大小与方向”两个方面的积分.从形式上看,对弧长的积分是标量之间的乘法,对坐标的积分是向量之间的点乘.
说点物理方面的应用应该更容易理解(这两个例子其实就是高数书上引出两类曲线积分的引例,也是普通物理的基础):
(1)设想有一根绳子,其质量线密度λ并不均匀,即它是沿绳子曲线每点位置坐标的函数λ(r),如何求出这条绳子的总质量?只要把λ(r)与对应位置的弧微分ds相乘就得到对应ds长度的质量,再对它沿着绳子曲线l积分就得到绳子的总质量了,即m=∫λ(r)ds,积分路径是绳子对应的曲线l.这个是对弧长的积分.
(2)设想有一质点在变力f(r)(f和r都是矢量,有大小有方向)的作用下,沿着轨迹s运动,如何求出某一段时间内变力f对质点所做的总功?只要把变力f(r)与某一微小时间间隔内的位移dr点乘,就可以得到这一小段时间内力对质点做的微功,然后再对质点运动轨迹s积分就可以得到力对质点做的总功,即w=∫f(r)·dr,积分路径是质点运动的轨迹s.这个是对坐标的积分.
(这里所有的表达式都是矢量)
很容易看出两者的区别,这两类积分的名称就是从积分微元上定义的,ds是弧微分,dr是坐标微分(位移).当然也能看出两者的联系,只要我们将对坐标的积分限定一个方向,比如我只要知道变力f在竖直方向上对质点做了多少功,只要将(2)中表达式把dr分开,写成方位角乘以弧长ds的形式,对坐标积分就可以变为对弧长积分.这就反映出两种积分的关系:
投影关系.
2楼:匿名用户
说简单点:对弧
长的积分只是对“弧长的大小积分”,而对坐标的积分则包含对“大小与方向”两个方面的积分。从形式上看,对弧长的积分是标量之间的乘法,对坐标的积分是向量之间的点乘。
说点物理方面的应用应该更容易理解(这两个例子其实就是高数书上引出两类曲线积分的引例,也是普通物理的基础):
(1)设想有一根绳子,其质量线密度λ并不均匀,即它是沿绳子曲线每点位置坐标的函数λ(r),如何求出这条绳子的总质量?只要把λ(r)与对应位置的弧微分ds相乘就得到对应ds长度的质量,再对它沿着绳子曲线l积分就得到绳子的总质量了,即m=∫λ(r)ds,积分路径是绳子对应的曲线l。这个是对弧长的积分。
(2)设想有一质点在变力f(r)(f和r都是矢量,有大小有方向)的作用下,沿着轨迹s运动,如何求出某一段时间内变力f对质点所做的总功?只要把变力f(r)与某一微小时间间隔内的位移dr点乘,就可以得到这一小段时间内力对质点做的微功,然后再对质点运动轨迹s积分就可以得到力对质点做的总功,即w=∫f(r)·dr,积分路径是质点运动的轨迹s。这个是对坐标的积分。
(这里所有的表达式都是矢量)
很容易看出两者的区别,这两类积分的名称就是从积分微元上定义的,ds是弧微分,dr是坐标微分(位移)。当然也能看出两者的联系,只要我们将对坐标的积分限定一个方向,比如我只要知道变力f在竖直方向上对质点做了多少功,只要将(2)中表达式把dr分开,写成方位角乘以弧长ds的形式,对坐标积分就可以变为对弧长积分。这就反映出两种积分的关系:
投影关系。
3楼:匿名用户
分别是第一类曲线积分和第二类曲线积分,详情可参考大学数学中的微分学下册
对弧长的曲线积分和对坐标的曲线积分的区别
4楼:闪亮登场
弧长的曲线积分是关于s的,将x,y r,转换为ds,而对坐标曲线的积分是反过来的
高等数学,对弧长曲线积分和对坐标轴曲线积分的意义区别是什么?积分出来的是什么?
5楼:矛虫虫
前者没有方向,后者有方向
6楼:六忻畅甘硕
对弧长的曲线积分不要考虑方向直接套公式
对坐标的曲线积分要考虑方向
对弧长的曲线积分求的是什么,也就是几何意义,对坐标的曲线积分呢
7楼:匿名用户
1)第一类曲线积分
a、不含被积函数,是曲线积分长度
b、含被积函数,理解为被积函数是曲线线密度,积分就是曲线质量2)第二类曲线积分
把积分函数看成力f,积分之后为力f沿着曲线所作功。
曲线积分分为:
(1)对弧长的曲线积分 (第一类曲线积分)(2)对坐标轴的曲线积分(第二类曲线积分)两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对l的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:
对l’的曲线积分∫p(x,y)dx+q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号
8楼:匿名用户
对弧长的曲线积分:
如被积函数是弧的线密度,这个积分可以求出这段弧的质量。
特殊的,当被积函数是1的话,可以求出弧的长度。
对坐标的,就是曲边梯形的面积。
弧长曲线积分和坐标曲线积分有什么不一样吗?求大神用2种方法做下,例1,
9楼:匿名用户
简单的说,对弧长的积分只是对“弧长的大小积分”
而对坐标的积分则包含对“大小与方向”两个方面的积分从形式上看,对弧长的积分是标量之间的乘法,对坐标的积分是向量之间的点乘
方法一:参数方程化为第一类曲线积分
用定积分求值
方法二:补充线段,构成封闭曲线
利用格林公式,化为二重积分
过程如下图:
对弧长与对坐标曲线积分的区别是什么?
10楼:匿名用户
在几何意义方面:
弧长积分可以计算弧长曲线的长度,∮ds = l的长度
坐标积分没有直接的几何用法,一般只有物理上的
但是联系格林公式的话,可做坐标积分和二重积分之间的桥梁
二重积分的几何意义是计算平面面积的
所以坐标积分的形式(1/2)∮ xdy-ydx就是计算平面面积
在物理意义方面:
弧长积分可以计算曲线的质量,转动惯量等等
坐标积分可以计算变力做功
下面是从其他地方摘录回来的解释:
说简单点:对弧长的积分只是对“弧长的大小积分”,而对坐标的积分则包含对“大小与方向”两个方面的积分.从形式上看,对弧长的积分是标量之间的乘法,对坐标的积分是向量之间的点乘.
说点物理方面的应用应该更容易理解(这两个例子其实就是高数书上引出两类曲线积分的引例,也是普通物理的基础):
(1)设想有一根绳子,其质量线密度λ并不均匀,即它是沿绳子曲线每点位置坐标的函数λ(r),如何求出这条绳子的总质量?只要把λ(r)与对应位置的弧微分ds相乘就得到对应ds长度的质量,再对它沿着绳子曲线l积分就得到绳子的总质量了,即m=∫λ(r)ds,积分路径是绳子对应的曲线l.这个是对弧长的积分.
(2)设想有一质点在变力f(r)(f和r都是矢量,有大小有方向)的作用下,沿着轨迹s运动,如何求出某一段时间内变力f对质点所做的总功?只要把变力f(r)与某一微小时间间隔内的位移dr点乘,就可以得到这一小段时间内力对质点做的微功,然后再对质点运动轨迹s积分就可以得到力对质点做的总功,即w=∫f(r)·dr,积分路径是质点运动的轨迹s.这个是对坐标的积分.
(这里所有的表达式都是矢量)
很容易看出两者的区别,这两类积分的名称就是从积分微元上定义的,ds是弧微分,dr是坐标微分(位移).当然也能看出两者的联系,只要我们将对坐标的积分限定一个方向,比如我只要知道变力f在竖直方向上对质点做了多少功,只要将(2)中表达式把dr分开,写成方位角乘以弧长ds的形式,对坐标积分就可以变为对弧长积分.这就反映出两种积分的关系:
投影关系.
对弧长的曲线积分和对坐标的曲线积分,几何意义是什么啊?
11楼:不许放嵩
物理意义不一样了
先说对弧长的曲线积分,它的物理意义是功,我现在定义一个函数f(x,y,z),它是力的函数,现在曲线方程为u = u(x,y,z),那么这个力的函数沿着曲线方程做功,问你做的功有多大???就是第一类曲线积分,对弧长的曲线积分了吧???
再说对坐标的曲线积分,则对应的物理意思就是向量,比如我给的力的函数为向量﹛p、q、r﹜,那么功的定义肯定是和对应的﹛dx、dy、dz﹜相乘吧???就是第二类曲线积分……
另外第二类曲线积分还可以用于定义场的一些量,比第一类曲线积分常用的……
12楼:筱晢
都是物理学上这些抽象的概念 第一类已知线密度求与绳子的形状 求密度 第二类是已知变力与做功方向 求做功大小 所以也叫对坐标的曲线积分
高数,弧长的曲线积分与坐标的曲线积分有什么区别
13楼:
对弧长的曲线积分不考虑方向,在化成定积分时下限小于上限。对坐标的曲线积分是考虑方向的。
14楼:揭蕾完海阳
书上有给出二者关系,其实是等价的,就是表示的问题。公式cosa,cosb,cosr,中的a,b,r的意义是将曲线分别投影至坐标轴上的夹角上,然后进行坐标曲线积分。
对弧长的曲线积分与对坐标的曲线积分的区别和联系。
15楼:匿名用户
说简单点:对弧长的
积分只是对“弧长的大小积分”,而对坐标的积分则包含对“大小与方向”两个方面的积分.从形式上看,对弧长的积分是标量之间的乘法,对坐标的积分是向量之间的点乘.
说点物理方面的应用应该更容易理解(这两个例子其实就是高数书上引出两类曲线积分的引例,也是普通物理的基础):
(1)设想有一根绳子,其质量线密度λ并不均匀,即它是沿绳子曲线每点位置坐标的函数λ(r),如何求出这条绳子的总质量?只要把λ(r)与对应位置的弧微分ds相乘就得到对应ds长度的质量,再对它沿着绳子曲线l积分就得到绳子的总质量了,即m=∫λ(r)ds,积分路径是绳子对应的曲线l.这个是对弧长的积分.
(2)设想有一质点在变力f(r)(f和r都是矢量,有大小有方向)的作用下,沿着轨迹s运动,如何求出某一段时间内变力f对质点所做的总功?只要把变力f(r)与某一微小时间间隔内的位移dr点乘,就可以得到这一小段时间内力对质点做的微功,然后再对质点运动轨迹s积分就可以得到力对质点做的总功,即w=∫f(r)·dr,积分路径是质点运动的轨迹s.这个是对坐标的积分.
(这里所有的表达式都是矢量)
很容易看出两者的区别,这两类积分的名称就是从积分微元上定义的,ds是弧微分,dr是坐标微分(位移).当然也能看出两者的联系,只要我们将对坐标的积分限定一个方向,比如我只要知道变力f在竖直方向上对质点做了多少功,只要将(2)中表达式把dr分开,写成方位角乘以弧长ds的形式,对坐标积分就可以变为对弧长积分.这就反映出两种积分的关系:
投影关系.
平面曲线的弧长与曲线积分的关系,对弧长的曲线积分与对坐标的曲线积分的区别和联系。
1楼 执子手偕老矣 第一个 当中,你手写的那两个式子有明显错误,这说明你没有理解ds的含义,曲线弧长ds实际上就是 x 2 y 2 在微分的情况下 x dx y f x dx 最终结果就是ds dx 1 f x 2 若换x,y换成t的参数方程也是这么理解 对弧长的曲线积分与对坐标的曲线积分的区别和联...
对弧长的曲线积分和对坐标的曲线积分,几何意义是什么啊
1楼 不许放嵩 物理意义不一样了 先说对弧长的曲线积分,它的物理意义是功,我现在定义一个函数f x y z ,它是力的函数,现在曲线方程为u u x y z ,那么这个力的函数沿着曲线方程做功,问你做的功有多大???就是第一类曲线积分,对弧长的曲线积分了吧??? 再说对坐标的曲线积分,则对应的物理意...
昼和夜是怎么区分的,昼弧和夜弧要如何区分?光照图是什么?昼弧和夜弧长是指弧长还是两地直线距离?
1楼 失眠瞌睡虫 太阳在地平线上为昼,反之。 地球自转一周为一昼夜,谓之 太阳日 。当地球自转时,面向太阳之地面为 昼 ,背向太阳之地面则为 夜 。昼夜的形成即由此。 春分以后,日照北半球渐多,因此北半球夜短昼长,南半球则相反 秋分以后,日照南半球渐多,故北半球昼短夜长,南半球仍相反。 假设地球没有...