1楼:匿名用户
以下a,b,c均表示向量.
取一个右手直角坐标系,设
a=(a1,a2,a3),b=(b1,b2,b3),c=(c1,c2,c3).
由于axb=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)
所以(axb)xc的第一个坐专标为
(a3b1-a1b3)c3-(a1b2-a2b1)c2.
另一方面,(a·
属c)·b-(b·c)·a的第一个坐标为
(a1c1+a2c2+a3c3)b1-(b1c1+b2c2+b3c3)a1=(a3b1-a1b3)c3-(a1b2-a2b1)c2
因此等式两边的向量的第一个坐标相等,同理可证其他两个坐标也相等,从而等式成立
平面向量加法(a+b)+c=a+(b+c)怎么作图证明
2楼:
如图所示,oa是向量a,ob是向量b,oc是向量c
平移向量b,使b的起始端位于向量a的终端,b的终端为d点,则od就是向量a+b
平移向量c,使c的起始端位于向量a+b的终端,c的终端为e点,则oe就是向量(a+b)+c
平移向量c,使c的起始端位于向量b的终端,c的终端为f点,则of就是向量b+c
只要证明了ae与of平行且相等,就说明ae就是向量b+c
∵ bf//oc,de//oc,∴ bf//de
∵ ob//ad(ad由ob平移),bf//de,∴ ∠fbo=eda
∵bf=oc,de=oc,∴ of=ae
∵ bf=de,ob=ad(ad由ob平移),∠fbo=eda,∴△fbo≌△eda
∵ △fbo≌△eda,∴ of=ae,∠fob=∠ead
∵ ob//oc,∠fob=∠ead,∴ of//ae
∵ of=ae,of//ae,∴ ae就是向量b+c
∴ oe就是向量a+(b+c)
高等数学,矢量的矢量积也就是叉乘,怎么算这道题 (a+b+c)*c+(a+b+c)*b-(b-c)
3楼:皇家**谭雅
原式=a*c+b*c+0+a*b+0+c*b-b*a+c*a=a*c+b*c+a*b-b*c+a*b-a*c=2a*b。
平面向量的所有公式
4楼:光辉
1、加法
向量加法的三角形法则,已知向量ab、bc,再作向量ac,则向量ac叫做ab、bc的和,记作ab+bc,即有:ab+bc=ac。
2、减法
ab-ac=cb,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。-(-a)=a、a+(-a)=(-a)+a=0、a-b=a+(-b)。
3、数乘
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。用坐标表示的情况下有:
λab=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)。
4、数量积
已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:
a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
5、向量积
向量a与向量b的夹角:已知两个非零向量,过o点做向量oa=a,向量ob=b,向量积示意图则∠aob=θ 叫做向量a与b的夹角,记作。已知两个非零向量a、b,那么a×b叫做a与b的向量积或外积。
向量积几何意义是以a和b为边的平行四边形面积,即s=|a×b|。
6、混合积
给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c。
扩展资料
物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。
它始于莱布尼兹的位置几何。
现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们**的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。
随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。
5楼:
设a=(x,y),b=(x',y')。
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。
ab+bc=ac。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
ab-ac=cb. 即“共同起点,指向被减”
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)b=λ(ab)=(aλb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:1 如果实数λ≠0且λa=λb,那么a=b。2 如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积
定义:已知两个非零向量a,b。作oa=a,ob=b,则角aob称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。
向量的数量积的坐标表示:ab=xx'+yy'。
向量的数量积的运算律
ab=ba(交换律);
(λa)b=λ(ab)(关于数乘法的结合律);
(a+b)c=ac+bc(分配律);
向量的数量积的性质
aa=|a|的平方。
a⊥b 〈=〉ab=0。
|ab|≤|a||b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。
2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c。
3、|ab|≠|a||b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
4、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:
∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量ab/向量cd”是没有意义的。
向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
1 当且仅当a、b反向时,左边取等号;
2 当且仅当a、b同向时,右边取等号。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
1 当且仅当a、b同向时,左边取等号;
2 当且仅当a、b反向时,右边取等号。
定比分点
定比分点公式(向量p1p=λ向量pp2)
设p1、p2是直线上的两点,p是l上不同于p1、p2的任意一点。则存在一个实数 λ,使 向量p1p=λ向量pp2,λ叫做点p分有向线段p1p2所成的比。
若p1(x1,y1),p2(x2,y2),p(x,y),则有
op=(op1+λop2)(1+λ);(定比分点向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分点坐标公式)
我们把上面的式子叫做有向线段p1p2的定比分点公式
三点共线定理
若oc=λoa +μob ,且λ+μ=1 ,则a、b、c三点共线
三角形重心判断式
在△abc中,若ga +gb +gc=o,则g为△abc的重心
[编辑本段]向量共线的重要条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
[编辑本段]向量垂直的充要条件
a⊥b的充要条件是 ab=0。
a⊥b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.
6楼:京晓荆雁露
1、向量的的数量积
定义:已知两个非零向量a,b。作oa=a,ob=b,则角aob称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。
向量的数量积的坐标表示:ab=xx'+yy'。
向量的数量积的运算律
ab=ba(交换律);
(λa)b=λ(ab)(关于数乘法的结合律);
(a+b)c=ac+bc(分配律);
向量的数量积的性质
aa=|a|的平方。
a⊥b〈=〉ab=0。
|ab|≤|a||b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。
2、向量的数量积不满足消去律,即:由
ab=ac
(a≠0),推不出
b=c。
3、|ab|≠|a||b|
4、由|a|=|b|
,推不出
a=b或a=-b。
2、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:
∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量ab/向量cd”是没有意义的。
3、向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
1当且仅当a、b反向时,左边取等号;
2当且仅当a、b同向时,右边取等号。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
1当且仅当a、b同向时,左边取等号;
2当且仅当a、b反向时,右边取等号。
4、定比分点
定比分点公式(向量p1p=λ向量pp2)
设p1、p2是直线上的两点,p是l上不同于p1、p2的任意一点。则存在一个实数
λ,使向量p1p=λ向量pp2,λ叫做点p分有向线段p1p2所成的比。
若p1(x1,y1),p2(x2,y2),p(x,y),则有
op=(op1+λop2)(1+λ);(定比分点向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分点坐标公式)
我们把上面的式子叫做有向线段p1p2的定比分点公式
5、三点共线定理
若oc=λoa
+μob
,且λ+μ=1
,则a、b、c三点共线
三角形重心判断式
在△abc中,若ga
+gb+gc=o,则g为△abc的重心
向量共线的重要条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是
xy'-x'y=0。
零向量0平行于任何向量。
向量垂直的充要条件
a⊥b的充要条件是
ab=0。
a⊥b的充要条件是
xx'+yy'=0。
零向量0垂直于任何向量.
设a、b、c R,求证(a+b,设a、b、c∈R,求证√(a+b)+√(b+c)+√(c+a)≥√2(a+b+c)
1楼 陈 因为容易证明 a b a b 2 b c b c 2 c a c a 2 所以三个加起来,得到 a b b c c a 2 a b c 已知a b c r a b c 求证a 2 b 2 c 2 2abcosc 2bccosa 2accosb 2楼 匿名用户 a b c ,是三 角形的内角...
在abc中,角a,b,c的对边分别为a,b,c,向量m
1楼 匿名用户 m垂直n,则 有m n 1 sinc 2 sinc cosc 0 sinc cosc 1 sinc 2 1 sinc cosc 1 sinc 2,移项得 sinc sinc 2 1 cosc 由二倍角公式得 2sinc 2 cosc 2 sinc 2 2 sinc 2 2 因为sin...
a,b表示什么?(a,b为平面向量)
1楼 笨笨送牡丹 是向量a b的内积 大学里学的 你是高中生吧 你们用就是 cos这是用来求夹角的 2楼 忘记虚空 表示向量a和向量b的夹角 平面向量a在b方向上的投影公式 3楼 韩苗苗 a cos 叫做 向量a在向量b上的投影 向量a 向量b a b cos 为两向量夹角 b cos 叫做向量b在...