1楼:初数宁静致远
几何证明要学好关键有两条,一是定理要记熟、理解,二是识图能力要强
定理,不仅要背内容,还要记定理的基本图形和定理的推理书写格式;
识图能力,需要一定量的练习,根据已知条件、图形能够联想到相关定理,这是识图能力强的初步,能够添加辅助线将已知与求证联系起来这是识图能力的进一步,能够根据条件、图形探索出求证外的其他结论,这是识图能力强的高境界了,这需要在平时做题中注意总结和联想。
2楼:死亡紫灵天使月
其实初二几何证明题挺好学的 就是有一个固定的步骤 再像代数一样往里带就行了
3楼:捷环节卓
简单的题你一眼能看出来。
看不出来的,如果有中点,延长过中点的线试试如果有正方形等边三角形什么的,你旋转,试试我暂时能想这么多。
其实辅助线的添加就是平移、旋转、轴对称的变形,你可以碰碰运气。其实如果真出难题,没有人会保证都会算的
初二数学的几何证明题自己觉得好难,但又不知道怎么学,要学好几何证明,有哪些方法呢?
4楼:匿名用户
数学关键是多做题目,多思考。多花点时间,数学一定学得好的。
方法其实还是 要靠自己多摸索。尤其老师平时讲的方法要稳固的掌握。
5楼:匿名用户
1、课前预习,上课一定跟着老师走,课后认真复习,最重要的是课前预习和上课跟着老师走,这个问题每个老师都会要求,好多学生也都以为自己做到了,可是要真正做好很难也要求很高,要学好数学就要注重这两步,首先预习必须弄懂每个定理定义的由来,不是背下来而是理解后熟记,这样到做题时才能做到读到每个条件就知道该条件的用处,读完题目也就知道该题用什么定理来完成。上课对于预习好了的同学来说那是属于“复习”,但是绝对不能认为自己已经懂了而不听课自己完成其他的,因为只要你思路跟着老师走,许多模糊的地方会瞬间明朗,明白通透的地方记忆会增加几倍。
2、对于几何来说,主要是锻炼自己的空间思维,基本定理和定义很重要,必须吃透了简单的才有学好难度高的资本。其次,做几何题必须养成勤作图的习惯,每个题都要养成先按已知条件作图后思考完成,简单的一个点一个线或许你不用作图,但是别忘了我们将来要学的各种几何图形都是由点和线组成,切记基础一定要打牢。希望你认真阅读并理解我的意思,希望我的方法能给你带来帮助
6楼:貓咪i毛球
1.证明题什么的应该牢记所有的定义定理
2.记住所有见过的图形解题方法,举一反三
3.解题过程很重要,顺序是王道(好押韵)
4.要熟用数字字母标角,防乱
5.有探索精神,不要侥幸第二天老师讲,自己做的比别人讲的对你的几何学习有很大的突破
6.兴趣,我学几何全靠兴趣
7.多做题,定义定理不要瞎套,尽量每一步都写上相关的8. ......
以上是这货学几何的整理,还有很多,都是自己做题过程中总结的,要多角度分析题,分析图,加辅助线什么的...还有就是...加油!
数学的几何证明题如何学好?
7楼:何秋光学前数学
很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。
证明题有三种思考方式
● 正向思维
对于一般简单的题目,我们正向思考,轻而易举可以做出。这里就不详细讲述了。
● 逆向思维
顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。
同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。
例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去…
这样我们就找到了解题的思路,然后把过程正着写出来就可以了。
● 正逆结合
对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。
初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。
给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
证明题要用到哪些原理
要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。
下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两个角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等。
三、证明两条直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
四、证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
五、证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长**段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于**段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
六、证明角的和差倍分
1.与证明线段的和、差、倍、分思路相同。
2.利用角平分线的定义。
3.三角形的一个外角等于和它不相邻的两个内角的和。
七、证明线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
八、证明两角的不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
九、证明比例式或等积式
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
十、证明四点共圆
1.对角互补的四边形的顶点共圆。
2.外角等于内对角的四边形内接于圆。
3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。
4.同斜边的直角三角形的顶点共圆。
5.到顶点距离相等的各点共圆。
8楼:匿名用户
几何证明题入门难,证明题难做,是许多学生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、**证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。
一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。
二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。
如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。
三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。
四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.
对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.
角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。
然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。
五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。
以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,
分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。
这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:
从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:
可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。
正逆结合,战无不胜。
初二数学几何证明题(附图),初二数学:几何证明题(带图)
1楼 匿名用户 如果e点是ad和a b 的交点 那么连接e和c 解 连接e点和c点 因 正方形abcd 所 dcb 90度 因 b cb 30度 所 dcb 60度 90度 30度 又因 正方形abcd和正方形a b c d ,且边长 1所 dc b c 1 因 正方形abcd和正方形a b c d...
初二数学几何压轴题怎样学好初二几何
1楼 爬山虎 学好几何无非做好以下几点想学好几何,一定要注意以下几点 1 多做题,在起步初期,多见一些题,对一些模型有初步认识。 2 多总结,尽量在老师的帮助下能够总结出一些模型的主要辅助线做法和解题方法。 3 多应用,多用模型解决问题,不要没有方法的撞大运,要根据图形特点思考解法。 4 多完善,不...
初中几何复习初中生几何怎样学,怎样才能学好初中数学中的几何?
1楼 7417可儿 1 多刷题 2 整理错题,归纳相同题型的解法,实现一题多解,多题一解 3 熟知概念 回归课本!!很重要 4 灵活应用 怎样才能学好初中数学中的几何? 2楼 海风教育 数学呢 是一个研究数量 结构变化和空间模型等等的含义的一种科学方式 它是物理化学等科目的基础 而且和我们的日常生活...