1楼:7417可儿
1.多刷题 2.整理错题,归纳相同题型的解法,实现一题多解,多题一解 3.熟知概念(回归课本!!很重要) 4.灵活应用
怎样才能学好初中数学中的几何?
2楼:海风教育
数学呢,是一个研究数量,结构变化和空间模型等等的含义的一种科学方式,它是物理化学等科目的基础.而且和我们的日常生活有着很大的关联,所以说,学好数学对于我们每个人来说都是非常重要的.下面就向大家来介绍一下怎么学习初中数学吧!
学习数学还必要的,因为数学是从幼儿园开始就接触的科目,如果说不会数学,那不是太丢人了吗?以下就是关于怎么学习初中数学的技巧:
初中数学整式总结
一:日常数学的学习
首先,在平时的学习数学当中,事先需要在课前进行认真的预习.预习的目的呢,就是为了能够更好的在课堂上吸收老师所讲的知识,通过预习之后.我们把握的程度一般就在80%左右了.
随后在预习当中,不懂的地方就要在课堂上解决.不会的地方需要注重的表明起来,之后会了就多做些例题进行巩固.
而且具体的预习方式方法如下:把整本书的题目先都做完,同时画出知识点的含义.这个过程大约在半个小时左右,如果在时间允许的状况之外,还可以先做一下会写的练习题,不会的空下,等到明天老师讲课的时候再做.
其次呢,在学习数学上是需要和练习题一起结合的,如果说你只在课堂上听课是没有用的.因为你虽然说你是听懂了,但是你做题还是不会的,所以数学注重的是做题,在听懂的基础上还是要多做些练习题的,因为练习题多做了.之后你的.
能力才会慢慢的增强.如果说遇到了难题,不懂的题一定要提出来,不懂就问,不能把它咽下去,谁也不说,否则在考试的时候遇到这些题目,你依然不会.
然后呢,就是复习,写完作业之后呢,对于当天学的内容需要再看一遍,巩固一下基础知识.然后再买些练习册,或者是在网上搜一些题再做一下.这样有助于你数学成绩的提高.
积极做题
二:考试时的技巧
如果你是想得高分的话,你需要在选择填空,还有计算题上是绝对不能丢分儿的,所以这需要你谨慎的做题.如果是一开始不知道一道题该怎么做,但是后来突然明白的那一种,千万要冷静,不能瞎写,要先在草稿纸上写一遍,最后再放在答题纸上.
以上就是关于怎么学习初中数学的一些技巧.希望大家是可以理解的.其实学习数学并不难,重要的是要多做题.并且了解题型的技巧.
3楼:匿名用户
在初中数学的学习中,几何一直是大多数学生的难题,那么学习几何到底有没有捷径呢?我们又应该怎样来学习几何呢?
(一)对基础知识的掌握一定要牢固,在这个基础上我们才能谈如何学好的问题。例如我们在证明相似的时候,如果利用两边对应成比例及其夹角相等的方法时,必须注意所找的角是两边的夹角,而不能是其它角。在回答圆的对称轴时不能说是它的直径,而必须说是直径所在的直线。
像这样的细节我们必须在平时就要引起足够的重视并且牢固掌握,只有这样才是学好几何的基础。
(二)善于归纳总结,熟悉常见的特征图形。举个例子,已知a,b,c三点共线,分别以ab,bc为边向外作等边△abd和等边△bce,如果再没有其他附加条件,那么你能从这个图形中找到哪些结论?
如果我们通过很多习题能够总结出:一般情况下题目中如果有两个有公共顶点的等边三角形就必然会出现一对旋转式的全等三角形的结论,这样我们很容易得出△abe≌△dbc,在这对全等三角形的基础上我们还会得出△emb≌△**b,△mbn是等边三角形,mn∥ac等主要结论,这些结论也会成为解决其它问题的桥梁。在几何的学习中这样典型的图形很多,要善于总结。
(三)熟悉解题的常见着眼点,常用辅助线作法,把大问题细化成各个小问题,从而各个击破,解决问题。在我们对一个问题还没有切实的解决方法时,要善于捕捉可能会帮助你解决问题的着眼点。例如:
在一个非直角三角形中出现了特殊的角,那你应该马上想到作垂直构造直角三角形。因为特殊角只有在特殊形中才会发挥作用。再比如:
在圆中出现了直径,马上就应该想到连出90°的圆周角。遇到梯形的计算或者证明问题时,首先我们心里必须清楚遇到梯形问题都有哪些辅助线可作,然后再具体问题具体分析。举个例子说,如果题目中说到梯形的腰的中点,你想到了什么?
你必须想到以下几条:第一你必须想到梯形的中位线定理;第二你必须想到可以过一腰的中点平移另一腰;第三你必须想到可以连接一个顶点和腰的中点然后延长去构造全等三角形。只有这几种可能用到的辅助线烂熟于心,我们才能很好的解决问题。
其实很多时候我们只要抓住这些常见的着眼点,试着去做了,那么问题也就迎刃而解了。另外只要我们想到了,一定要肯于去尝试,只有你去做了才可能成功。
(四)考虑问题全面也是学好几何至关重要的一点。在几何的学习中,经常会遇到分两种或多种情况来解的问题,那么我们怎么能更好的解决这部分问题呢?这要靠平时的点滴积累,对比较常见的分情况考虑的问题要熟悉。
例如说到等腰三角形的角要考虑是顶角还是底角,说到等腰三角形的边要考虑是底还是腰,说到过一点作直线和圆相交,要考虑点和圆有三种位置关系,所以要画出三种图形。这样的情况在几何的学习中是非常常见的,在这里不一一列举,但大家在做题时一定要注意考虑到是否要分情况考虑。很多时候是你平常注意积累了,你心里有了这个问题,你做题时才会自然而然的想到。
总之,学好几何必须在牢固掌握基础知识的基础上注意平时的点滴积累,善于归纳总结,熟悉解题的常见着眼点,当然做到这些必须要有一定数量的习题积累,我们并不提倡题海战术,但做适量的习题还是必要的,只有量的积累才能达到质的飞跃。
4楼:凉风习习的花园
多做题,多画图,几何有时
需要想象力,当从一个方向想不出该如何解题目时,可以把试卷转过来看,从其他角度看也许就有灵感了,总之,还是多做题,多思考,静下心来和题目交朋友,不要怕麻烦,当你解题时就是把朋友从困难中解救出来,耐心的解决题目你会尝到成功的喜悦。
初中生怎样学好几何
5楼:匿名用户
现在的教育都是应试教育,我也是从初中走过来的,曾经也有你的疑惑,你想学好这是好的,办法只有一个,就是多做题,买本习题来自己做,不懂了就看后面的解析,看不懂了就问成绩好的同学,同学再不会就去请教老师
其实你们现在初中学的只是平面几何,很简单的,以后高中学的空间几何才叫难
所以你现在根本不存在学不学的好,只存在题做的多不多.就按我的方法去做,只要你做到了就会取得效果
总之祝你能成功~~
6楼:匿名用户
还是基本的知识没记扎实
7楼:呵呵哎呀哎呦
多做,熟能生巧,不信试试
怎么才能学好初中几何?
8楼:裘珍
答:初中几何是锻炼人的想象力和逻辑思维能力的最好方法。几何其实并不难,难的是数形结合的问题没有弄清楚。
几何的的定义定理记不住。其实没有必要死记硬背性质、定理、推论等内容,要通过多做练习题,不断地运用定理定义,图形的性质和判定定理;题做多了,自然就记住了。就如同和某人经常通**,他的**号码不需要记住,**打多了,自然就记住的道理是一样的。
初中几何应该包括平面几何和立体几何。立体几何没有什么难题,主要靠空间想象力。而平面几何的难题很多,因为平面几何可以做成综合类型的题太多了。
平面几何是由点引申到线,线包括直线和线段,从直线的平行,引出平行线分等比例线段,产生等比定理包括合、分比定理。有线段引出三角形和特殊线角形,三角形的合同(全等)、相似;因而产生了一系列的判定定理,和推论。由三角形引申到四边形, 总结出梯形(特殊梯形)、平行四边形和特殊的平行四边形-正方形、矩形和菱形、性质、判定定理。
平面曲线主要讲圆......。我不想讲太多,太多了记不住。几何不是靠别人讲的,是靠自己学习的。
在“学”与“习”的问题上,更多的是靠自己“习”,要“习”好很难,这就是“师傅领进门,修行在个人”。任何一门知识,都无捷径可走,都是要靠自己练习,要学好一门知识,仅凭完成老师留的作业,远远不够,必须自己找一些有一定难度的题做练习,才能够拔高。其实,每个老师讲课的方式方法不一,但是,所传授的知识都是教学大纲的内容,因此,学生在不同的地方所学的知识大体相同。
当有不清楚的地方,要经常向老师请教,然后再琢磨老师所讲的内容你能够接受和不能接受的问题。可以再问老师。弄通了教学内容就静下心来做练习题;通过做练习题,不断地归纳总结,知识就会系统化,也可以掌握解题技巧,从而提高解题速度。
最好的老师给你讲十次,不如自己做一次。学习知识的基本道理。自己的潜能要靠自己发挥,别人谁也帮不了,也代替不了。
这也是学生可以超越老师,而老师无法超越学生的基本道理;因为老师已经多年不做练习题了。所以,练习是学生学好和掌握知识的最佳途径。
9楼:侯恕柔茶
学习几何并不像有的同学所描绘的那样:“几何,几何,尖尖角角,又不好
看,又不好学”。其实几何是最具有形象性的一门科学,只要思想上重视,又注重学习方法,是完全可以学好的。
第一要学好概念。首先弄清概念的三个方面:①定义——对概念的判断;②图形——对定义的直观形象描绘;③表达方法——对定义本质属性的反映。
注意概念间的联系和区别,在理解的基础上记住公理、定理、法则、性质……
第二要学好几何语言。几何语言又分为文字语言和符号语言,几何语言总是和图形相联系。
第三要进行直观思维。即根据书上的图形,动手动脑用硬纸板、竹片等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力。
第四要富于想像。有的问题既要凭借图形,又要进行抽象思维。比如,几何中的“点”没有大小,只有位置。
现实生活中的点和实际画出来的点就有大小。所以说,几何中的“点”只存在于大脑思维中。“直线”也是如此,直线可以无限延伸,谁能把直线画到火星、再画到银河系、再画到广阔的宇宙中去呢?
直线也只存在于人们的大脑思维中。
第五要边学习、边总结、边提高。几何较之其他学科,系统性更强,要把自己学过的知识进行归纳、整理、概括、总结。比如证明两条直线平行,除了利用定义证明外,还有哪些证明方法?
两条直线平行后,又具备什么性质?在现实生活中,哪些地方利用了平行线?只要细心观察,不难发现,教室墙壁两边边缘,门框、桌、凳、玻璃板、书页、火柴盒,大部分包装盒……处处存在着平行线。
同学们只要认真学习,注意听讲,勤于思考,独立完成作业,是一定能学好几何的。
上课一定要认真听讲,当堂学的知识一定当堂理解了,认真对待老师留的作业,不明白得赶紧问。
定理公式不用死背,点一定理解,会运用。
学好立体几何的关键有两个方面:
1、图形方面:不但要学会看图,而且要学会画图,通过看图和画培养自己的空间想象能力是非常重要的。
2、语言方面:很多同学能把问题想清楚,但是一落在纸面上,不成话。需要记的一句话:
几何语言最讲究言之有据,言之有理。也就是说没有根据的话不要说,
不符合定理的话不要说。
至于怎样证明立体几何问题可从下面两个角度去研究:
1、把几何中所有的定理分类:按定理的已知条件分类是性质定理,按定理的结论分类是判定定理。
如:平行于同一条直线的两条直线平行,既可以把它看成是两条直线平行的性质定理,也可以把它看
成是两条直线平行的判定定理。
又如如果两个平面平行且同时和第三个平面相交,那么它们的交线平行。它既是两个平面平行的性质定理
又是两条直线平行的判定定理。这样分类之后,就可以做到需要什么就可以找到什么,比如:我们要证明直线
和平面垂直,可以用下面的定理:
(1)直线和平面垂直的判定定理
(2)两条平行垂直于同一个平面
(3)一条直线和两个平行平面同时垂直
2、明确自己要做什么:
一定要知道自己要做什么!在证明之前就要设计好路线,明确自己的每一步的目的,学会大胆假设,仔细推理。
初中三年有什么好的学习方法,初中生怎样学好各科?有效的学习方法有什么?
1楼 匿名用户 文科知识的积累在初一做好也很关键,初一理科学习任务相对较轻,思维量不大。需要做好语文与英语的词汇和阅读的积累,想总成绩拨尖靠的是各科均衡,不可能一科 两科打天下。尤其是小学很多很聪明的小男生,语文和英语是弱项,到初三想短时间补上来难度相当大,记忆量太大,不可能牢固和扎实。 再加上物理...