1楼:an你若成风
如果是一个无穷小量乘以一个有界量,
那么这个极限当然也是0
而一个常数当然是有界量,所以这个极限是0
若有疑问请追问,若满意还望采纳·
当x趋于0时,(1+x)的x分之一的极限是多少?为什么,求解析过程。
2楼:demon陌
x→0+,1/x→+∞,e^(1/x)就是e的正无穷次方,结果仍为正无穷;
x→0-,1/x→-∞,e^(1/x)就是e的负无穷次方,相当于1/e^(+∞),也就是说分母无穷大,因此极限为0.
某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值a不断地逼近而“永远不能够重合到a”(“永远不能够等于a,但是取等于a‘已经足够取得高精度计算结果)的过程中,此变量的变化。
被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近a点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值a叫做“极限值”(当然也可以用其他符号表示)。
这个定义,借助不等式,通过ε和n之间的关系,定量地、具体地刻划了两个“无限过程”之间的联系。因此,这样的定义应该是目前比较严格的定义,可作为科学论证的基础,至今仍在数学分析书籍中使用。
在该定义中,涉及到的仅仅是‘数及其大小关系’,此外只是用给定、存在、任何等词语,已经摆脱了“趋近”一词,不再求助于运动的直观。(但是理解’极限‘概念不能够抛弃‘运动趋势’去理解, 否则容易导致’把常量概念不科学地进入到微积分’领域里)
扩展资料:
极限的思想方法贯穿于数学分析课程的始终。可以说数学分析中的几乎所有的概念都离不开极限。在几乎所有的数学分析著作中,都是先介绍函数理论和极限的思想方法。
然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:
(1)函数在点连续的定义,是当自变量的增量趋于零时,函数值的增量趋于零的极限。
(2)函数在点导数的定义,是函数值的增量 与自变量的增量比 ,当 时的极限。
(3)函数在点上的定积分的定义,是当分割的细度趋于零时,积分和式的极限。
(4)数项级数的敛散性是用部分和数列的极限来定义的。
(5)广义积分是定积分其中 为,任意大于的实数当时的极限,等等。
性质1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。
但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”
3楼:同知晓
lim[(1+x)/x)]是这个意思么,x趋于0
当x趋近与0时,反比例函数的极限
1楼 杨正学 当x趋近于0时 反比例函数趋于无穷 反比例函数在x 0的极限是 还是不存在?我觉得应该是不存在,但是书上说是 2楼 匿名用户 应该是不存在。 严格意义上,无穷大属于不存在的一种。对于对数函数y lnx,x趋近零时,可以说极限不存在,也可以说极限负无穷大。但是对于反比例函数y 1 x,x...
x趋近于0!ln(1+X)的极限是多少
1楼 孔德文双琴 x趋于0时 ln 1 x 的等价无穷小是x ,分母 分子都是x,所以极限就是1 你可以这样理解 分母 分子趋于0的速度是一样的,即分子分母等价,所以极限是1 不明白再问我 2楼 j机械工程 ln1 x等价于x 就等于0 x趋于0时 ln 1 x 的极限是什么 3楼 当x无限趋于0时...
lnx当x趋于0的时候的极限是什么?x趋于的时候极限
1楼 匿名用户 定义域为 0 ,所以x只能趋于0 ,此时lnx趋于 当x趋于 时,lnx也趋于 。 由定义域的范围,x不可能趋于0 和 。 2楼 花自無芯碎自憐 对于lnx,定义域是x 0, 所以 对于楼主的提问,必有x 因此 lim x lnx 方括号内的内容,应该在lim的下方 lnx x在x趋...