1楼:冷眸
我以过来的身份告诉你这个后来者,高考导数很重要,数学基以导数贯穿,你们还是初学,以后就会驾轻就熟的,而且导数题型固定,要求机变。 补充: 至于大学的微积分,作为万千受害者的代表,我可以给一个明确形容的答案,那就是天书!
追问: 某数在某范围内可导,又是什么意思?求团长厢解… 回答:
好吧,我再来调动一下我麻木的数学神经。函数是有界域的概念,即有定义域和值域,在此数域内函数才有意义。而导数既是变化率,即为一种函数,亦有界域,而在某点导数无意义,即不可导。
再深入就是我们所学的极限概念了。
高中导数的导是什么概念
2楼:匿名用户
我的理解,导数中的“导”字可能是“引导,导向”的意思。因为导数反映了原函数在某点处切线的方向,就像一个交警指示前进方向一样,导数引导了原函数在此处的上升或下降。
高中数学中,导数主要有什么概念和意义?
3楼:鹊桥月夜
导数(derivative)是微积分中的重要基础概念。当自变
量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。
不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则**于极限的四则运算法则。
导数定义
[1](一)导数第一定义:设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第一定义
(二)导数第二定义:设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即
导数第二定义
(三)导函数与导数:如果函数 y = f(x) 在开区间 i 内每一点都可导,就称函数f(x)在区间 i 内可导。这时函数 y = f(x) 对于区间 i 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。
导函数简称导数。
高中导数的含义到底什么意思,,概念看不懂
4楼:匿名用户
是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。
可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则**于极限的四则运算法则。
怎么理解高中数学的导数
5楼:匿名用户
高中数学的导数题目
通常都不会太难的
对于函数某个点的导数值
就理解为其函数在这个点切线的斜率值
还有就是导数大于等于0为单调递增
导数小于等于0为单调递减,这是更重要的
高中生求教导,不理解导数的概念
6楼:木边兔
导数其实就是斜率的意思。当一个函数的导数不唯一是,那么导数就会随着横坐标的变化而变化。而随横坐标变化而变化就可以用函数表示,这就导致由函数生成了导函数。
从函数到导函数的计算法则就要靠背了。由于导数就是斜率,所以把过函数的点和导函数在这个点的斜率用点斜式表示,就是函数的切线了
高中数学的导数有什么作用?
7楼:匿名用户
导数(derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。
可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则**于极限的四则运算法则。
亦名纪数、微商,由速度变化问题和曲线的切线问题而抽象出来的数学概念。又称变化率。
如一辆汽车在10小时内走了 600千米,它的平均速度是60千米/小时,但在实际行驶过程中,是有快慢变化的,不都是60千米/小时。为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置s与时间t的关系为s=f(t),那么汽车在由时刻t0变到t1这段时间内的平均速度是[f(t1)-f(t0)]/[t1-t0],当 t1与t0很接近时,汽车行驶的快慢变化就不会很大,平均速度就能较好地反映汽车在t0 到 t1这段时间内的运动变化情况 ,自然就把极限[f(t1)-f(t0)]/[t1-t0] 作为汽车在时刻t0的瞬时速度,这就是通常所说的速度。一般地,假设一元函数 y=f(x )在 x0点的附近(x0-a ,x0 +a)内有定义,当自变量的增量δx= x-x0→0时函数增量 δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。
若函数f在区间i 的每一点都可导,便得到一个以i为定义域的新函数,记作 f',称之为f的导函数,简称为导数。函数y=f(x)在x0点的导数f'(x0)的几何意义:表示曲线l 在p0〔x0,f(x0)〕 点的切线斜率。
一般地,我们得出用函数的导数来判断函数的增减性的法则:设y=f(x )在(a,b)内可导。如果在(a,b)内,f'(x)>0,则f(x)在这个区间是单调增加的。。
如果在(a,b)内,f'(x)<0,则f(x)在这个区间是单调减小的。所以,当f'(x)=0时,y=f(x )有极大值或极小值,极大值中最大者是最大值,极小值中最小者是最小值。
导数的几何意义是该函数曲线在这一点上的切线斜率。
(1)求函数y=f(x)在x0处导数的步骤:
① 求函数的增量δy=f(x0+δx)-f(x0)
② 求平均变化率
③ 取极限,得导数。
(2)几种常见函数的导数公式:
① c'=0(c为常数函数);
② (x^n)'= nx^(n-1) (n∈q);
③ (sinx)' = cosx;
④ (cosx)' = - sinx;
⑤ (e^x)' = e^x;
⑥ (a^x)' = a^xlna (ln为自然对数)
⑦ (inx)' = 1/x(ln为自然对数)
⑧ (logax)' =(xlna)^(-1),(a>0且a不等于1)
补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。
(3)导数的四则运算法则:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v^2
(4)复合函数的导数
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献!
导数的应用
1.函数的单调性
(1)利用导数的符号判断函数的增减性
利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想.
一般地,在某个区间(a,b)内,如果>0,那么函数y=f(x)在这个区间内单调递增;如果<0,那么函数y=f(x)在这个区间内单调递减.
如果在某个区间内恒有=0,则f(x)是常函数.
注意:在某个区间内,>0是f(x)在此区间上为增函数的充分条件,而不是必要条件,如f(x)=x3在内是增函数,但.
(2)求函数单调区间的步骤
①确定f(x)的定义域;
②求导数;
③由(或)解出相应的x的范围.当f'(x)>0时,f(x)在相应区间上是增函数;当f'(x)<0时,f(x)在相应区间上是减函数.
2.函数的极值
(1)函数的极值的判定
①如果在两侧符号相同,则不是f(x)的极值点;
②如果在附近的左侧,右侧,那么,是极大值或极小值.
3.求函数极值的步骤
①确定函数的定义域;
②求导数;
③在定义域内求出所有的驻点,即求方程及的所有实根;
④检查在驻点左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.
4.函数的最值
(1)如果f(x)在〔a,b〕上的最大值(或最小值)是在(a,b)内一点处取得的,显然这个最大值(或最小值)同时是个极大值(或极小值),它是f(x)在(a,b)内所有的极大值(或极小值)中最大的(或最小的),但是最值也可能在〔a,b〕的端点a或b处取得,极值与最值是两个不同的概念.
(2)求f(x)在[a,b]上的最大值与最小值的步骤
①求f(x)在(a,b)内的极值;
②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
5.生活中的优化问题
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题称为优化问题,优化问题也称为最值问题.解决这些问题具有非常现实的意义.这些问题通常可以转化为数学中的函数问题,进而转化为求函数的最大(小)值问题.
高中数学的导数有什么作用,高中数学中,导数主要有什么概念和意义?
1楼 匿名用户 导数 derivative 是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。 可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则 于极限的四则运算法则。...
高中数学什么时候改编的,然后引入了极限和导数这些知
1楼 徐少 解析 1 极限和导数,是大一《高等数学》的主要内容。高中阶段会提前作铺垫的。 2 如果不作任何铺垫的话,大一直接学习这些课程,且大学里课程进度十分之快,可以预见的后果是 很多人挂科 高中数学什么时候改编的 然后引入了极限和导数这些知识点 2楼 匿名用户 我不知道早期版本的教材是什么情况,...
偏导在经济学中的意义是什么,和导数在经济学中的
1楼 鸿盛标牌厂 这个不是根据经济学理论来的,而是根据数学理论得出的结论。在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定。而导数是函数的局部性质。 一个函数在某一点的导数描述了这个函数在这一点附近的变化率。因此,当对总效用针对商品求导数的时候,就是在假设其他商品不...