1楼:伊来福孛庚
1、相似三角形的bai有关概念
(1)相du似三角zhi形:对应角相等dao,对应边成比例的两回个三角形是相似答三角形.
(2)相似比:相似三角形对应边的比.
二)、相似三角形
1、相似三角形的有关概念
(1)相似三角形:对应角相等,对应边成比例的两个三角形是相似三角形.
(2)相似比:相似三角形对应边的比.
2、平行于三角形一边的定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
3、三角形相似的判定
(1)两角对应相等,两三角形相似.
(2)两边对应成比例且夹角相等,两三角形相似.
(3)三边对应成比例,两三角形相似.
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,
那么这两个直角三角形相似.
4、相似三角形的性质
(1)相似三角形对应角相等,对应边成比例.
(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
(3)相似三角形周长的比等于相似比.
2楼:赫菊孛歌
1、相似三复角形的有关概制念
(1)相似三角形:bai对应角相等,对应边成du比例的两个三zhi角形dao是相似三角形.
(2)相似比:相似三角形对应边的比.
二)、相似三角形
1、相似三角形的有关概念
(1)相似三角形:对应角相等,对应边成比例的两个三角形是相似三角形.
(2)相似比:相似三角形对应边的比.
2、平行于三角形一边的定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
3、三角形相似的判定
(1)两角对应相等,两三角形相似.
(2)两边对应成比例且夹角相等,两三角形相似.
(3)三边对应成比例,两三角形相似.
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,
那么这两个直角三角形相似.
4、相似三角形的性质
(1)相似三角形对应角相等,对应边成比例.
(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
(3)相似三角形周长的比等于相似比
相似三角形性质是如何推导的
3楼:匿名用户
相似三角形的性质
定义相似三角形的对应角相等,对应边成比例。
定理相似三角形任意对应线段的比等于相似比。
定理相似三角形的面积比等于相似比的平方。
相似三角形的判定
类比全等三角形的判定定理,可以得出下列结论:
定理两角分别对应相等的两个三角形相似。
定理两边成比例且夹角相等的两个三角形相似。
定理三边成比例的两个三角形相似。
定理一条直角边与斜边成比例的两个直角三角形相似。
根据以上判定定理,可以推出下列结论:
推论三边对应平行的两个三角形相似。[1]
推论一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
相似三角形的特殊情况
1.凡是全等的三角形都相似
全等三角形是特殊的相似三角形,相似比为1。反之,当相似比为1时,相似三角形为全等三角形。
2. 有一个顶角或底角相等的两个等腰三角形都相似
由此,所有的等边三角形都相似。
性质1. 相似三角形对应角相等,对应边成比例。
2. 相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3. 相似三角形周长的比等于相似比。
4. 相似三角形面积的比等于相似比的平方。
由 4 可得:相似比等于面积比的算术平方根。
5. 相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
6. 若a/b =b/c,即b=ac,b叫做a,c的比例中项
7. a/b=c/d等同于ad=bc.
8. 不必是在同一平面内的三角形里。[2]
推论推论一:腰和底对应成比例的两个等腰三角形相似。
推论二:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论三:如果一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
4楼:匿名用户
相似三角形的性质是通过证明两个三角形相似的过程推导出来的
相似三角形的性质有哪些?
5楼:匿名用户
1、相似三角形对应角相等,对应边成比例。
2、相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3、相似三角形周长的比等于相似比。
4、相似三角形面积的比等于相似比的平方。
5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
扩展资料
相似三角形的判定定理:
1、平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
2、如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似
3、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似
4、如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似
6楼:匿名用户
1、相似三角形对应角相等,对应边成比例。
2、相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3、相似三角形周长的比等于相似比。
4、相似三角形面积的比等于相似比的平方。
5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
6、不在同一平面内的三角形里:
(1)相似三角形对应角相等,对应边成比例.
(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
(3)相似三角形周长的比等于相似比
7楼:笋干包扎
、相似三角形的有关概念
(1)相似三角形:对应角相等,对应边成比例的两个三角形是相似三角形.
(2)相似比:相似三角形对应边的比.
二)、相似三角形
1、相似三角形的有关概念
(1)相似三角形:对应角相等,对应边成比例的两个三角形是相似三角形.
(2)相似比:相似三角形对应边的比.
2、平行于三角形一边的定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
3、三角形相似的判定
(1)两角对应相等,两三角形相似.
(2)两边对应成比例且夹角相等,两三角形相似.
(3)三边对应成比例,两三角形相似.
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,
那么这两个直角三角形相似.
4、相似三角形的性质
(1)相似三角形对应角相等,对应边成比例.
(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
(3)相似三角形周长的比等于相似比.
8楼:wq来自星星的你
相似三角形
对应角相等 相似三角形对应高的比、相似三角形对应边的比、对应中线的比、对应角平分线的比和相似三角形周长的比都等于相似比。当然,其它一些如对应边所对的中位线、对应的外角等关系均可由定理推出。相似三角形面积的比等于相似比的平方
9楼:匿名用户
有4个定理:是相似三角形的判定定理:
1、平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
2、如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
3、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
4、如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似。
10楼:匿名用户
对应角相等,对应边成比例,
11楼:伟大的我一定行
不知道啊啊啊啊啊啊啊啊
如何证明相似三角形的性质(对应边成比例)?
12楼:鉲鎍
这可能用到到高中知识吧,设一个三角形ab=c,ac=b,bc=a,则有a/sina=b/sinb=c/sinc,另一个为ab=c’(与c不同),ac=b',bc=a',相似说明a=a’,b=b',c=c',a'/sina'=b'/sinb'=c'/sinc',两个式子相除就是啦
a'/a=b/b'=c/c'
13楼:成功气体
一共有5种,严格来说是4种
1、用相似三角形的定义来证:三个角对应相等,三条边对应成比例(应为这个方法太烦,所以基本用不上,可以把它逆用成性质)
2、两个三角形如果有两角对应相等,那么这两个三角形相似(三角形中,两个角形等相当于三个角相等,你可以画两个角相等的三角形,然后量量它们的边是不是成比例,以前的书上有证明的方法,但这一届就没有了,所以不作介绍,中考肯定不会考的)
3、两个三角形如果有两条边对应成比例,并且这两条边的夹角对应相等,则两个三角形相似(这个方法相当于证全等三角形中的sas的方法,你也可以用量的方法去证实一下,如果图画的好的话一边误差不会很大。下面的几种方法你也可以通过测量来证实)
4、两个三角形如果三边对应成比例,那么这两个三角形相似(相当于证全等三角形中的sss)
5、在两个直角三角形中,如果一直角边和斜边对应成比例,那么这两个三角形相似(相当于证全等三角形中的hl)
14楼:赞赤壁怀古
1、相似三角形的有关概念
(1)相似三角形:对应角相等,对应边成比例的两个三角形是相似三角形.
(2)相似比:相似三角形对应边的比.
二)、相似三角形
1、相似三角形的有关概念
(1)相似三角形:对应角相等,对应边成比例的两个三角形是相似三角形.
(2)相似比:相似三角形对应边的比.
2、平行于三角形一边的定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
3、三角形相似的判定
(1)两角对应相等,两三角形相似.
(2)两边对应成比例且夹角相等,两三角形相似.
(3)三边对应成比例,两三角形相似.
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,
那么这两个直角三角形相似.
4、相似三角形的性质
(1)相似三角形对应角相等,对应边成比例.
(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
(3)相似三角形周长的比等于相似比.
祝你学业有成!!!!!!!
什么叫相似三角形性质和判定,相似三角形的性质以及判定
1楼 匿名用户 三角分别相等,三边成比例的两个三角形 叫做相似三角形。 相似三角形的性质 定义 相似三角形的对应角相等,对应边成比例。 定理 相似三角形任意对应线段的比等于相似比。 定理 相似三角形的面积比等于相似比的平方。 相似三角形的判定 类比全等三角形的判定定理,可以得出下列结论 定理 两角分...
怎么证明相似三角形的判定定理,相似三角形的判定定理
1楼 少爷的磨难 1 如果一个三角形的两个角与另一个三角形的两个角对应相等 那么这两个三角形相似 简叙为两角对应相等两三角形相似 2 如果一个三角形的两条边和另一个三角形的两条边对应成比例 并且夹角相等 那么这两个三角形相似 简叙为 两边对应成比例且夹角相等 两个三角形相似 3 如果一个三角形的三条...
相似三角形的特点是什么怎样证,相似三角形有什么特点
1楼 边边边 等比 边角边 角相等边等比 角角 对应相等 还有个直角三角形的特殊情况 相似三角形有什么特点 2楼 匿名用户 相似三角 形的有关概念 1 相似三角形 对应角相等 对应边成比例的两个三角形是相似三角形 2 相似比 相似三角形对应边的比 二 相似三角形 1 相似三角形的有关概念 1 相似三...