怎样解三元一次方程组

2021-03-07 18:37:22 字数 5679 阅读 1945

1楼:angela韩雪倩

一般三元一次方程都有3个未知数x,y,z和3个方程组,先化简题目,将其中一个未知数消除,先把第1和第2个方程组平衡后相减,就消除了第一个未知数,再化简后变成新的二元一次方程。

然后把第2和第3个方程组平衡后想减,再消除了一个未知数,得出一个新的二元一次方程,之后再用消元法,将2个二元一次方程平衡后想减,就解出其中一个未知数了。

再将得出那个答案代入其中一个二元一次方程中,就得出另一个未知数数值,再将解出的2个未知数代入其中一个三元一次方程中,解出最后一个未知数了。

例子:①5x-4y+4z=13

②2x+7y-3z=19

③3x+2y-z=18

2*①-5*②:

(10x-8y+8z)-(10x+35y-15z)=26-95

④43y-23z=69

3*②-2*③:

(6x+21y-9z)-(6x+4y-2z)=57-36

⑤17y-7z=21

17*④-43*⑤:

(731y-391z)-(731y-301z)=1173-903

z=-3 这是第一个解

代入⑤中:

17y-7(-3)=21

y=0 这是第二个解

将z=-3和y=0代入①中:

5x-4(0)+4(-3)=13

x=5 这是第三个解

于是x=5,y=0,z=-3

扩展资料:

适合一个三元一次方程的每一对未知数的值,叫做这个三元一次方程的一个解。对于任何一个三元一次方程,令其中两个未知数取任意两个值,都能求出与它对应的另一个未知数的值。因此,任何一个三元一次方程都有无数多个解,由这些解组成的集合,叫做这个三元一次方程的解集。

例如,三元一次方程:

...解三元一次方程组的基本思想仍是消元,其基本方法是代入消元法和加减消元法。

步骤:①利用代入法或加减法,消去一个未知数,得到一个二元一次方程组;

②解这个二元一次方程组,求得两个未知数的值;

③将这两个未知数的值代入原方程中含有三个未知数的一个方程,求出第三个未知数的值,把这三个未知数的值用一个大括号写在一起就是所求的三元一次方程组的解。

一次方程组,原方程组中的每个方程至少要用一次。

2楼:匿名用户

答:三元方程如何解,首先确定消元,由三元变二元按你这个题,肯定是消z最省力。

由2×①-② 得:5x+3y=21 ④

②+2×③得:5x+7y=9 ⑤

由 ⑤- ④ 4y=-12

得y=-3

将y=-3代入 ④ 得到

5x-9=21

得x=6。

将x=6、y=-3代入②

得z=2

x=6、y=-3、z=2代入①③检验,结果正确所以 x=6

y=-3

z=2希望能帮上你

重点是:首先要选择容易消除的元进行消元

3楼:我是龙

会解三元一次方程组.通过解三元一次方程组的学习,提高逻辑思维能力.培养抽象概括的数学能力.

重点、难点:

三元一次方程组的解法.解法的技巧.

重点难点分析:

1.三元一次方程的概念

三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1, 2a-3b+c=0等都是三元一次方程.

2.三元一次方程组的概念

一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.

例如, 等都是三元一次方程组.

三元一次方程组的一般形式是:

3.三元一次方程组的解法

(1)解三元一次方程组的基本思想

解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.

(2)怎样解三元一次方程组?

解三元一次方程组例题

1.解方程组

法一:代入法

分析:仿照前面学过的代入法,将(2)变形后代入(1)、(3)中消元,再求解.

由(2),得 x=y+1. (4)

将(4)分别代入(1)、(3)得

解这个方程组,得

把y=9代入(4),得x=10.

因此,方程组的解是

法二:加减法

(3)-(1),得 x-2y=-8 (4)

由(2),(4)组成方程组

解这个方程组,得

把x=10,y=9代入(1)中,得 z=7.

因此,方程组的解是

法三:技巧法

分析:发现(1)+(2)所得的方程中x与z的系数与方程(3)中x与z的系数分别对应相等,因此可由(1)+(2)-(3)直接得到关于y的一元一次方程,求出y值后再代回,即可得到关于x、y的二元一次方程组

由(1)+(2)-(3),得 y=9.

把y=9代入(2),得 x=10.

把x=10,y=9代入(1),得 z=7.

因此,方程组的解是

注意:(1)解答完本题后,应提醒同学们不要忘记检验,但检验过程一般不写出.

(2)从上述问题的一题多解,使我们体会到,灵活运用代入法或加减法消元,将有助于我们迅速准确

求解方程组.

2.解方程组

分析:在这个方程组中,方程(1)只含有两个未知数x、z,所以只要由(2)(3)消去y,就可以得到只含有x,z的二元一次方程组.

(2)×3+(3),得11x+7z=29, (4)

把方程(1),(4)组成方程组

解这个方程组,得,

把x=-,z=5代入(2)得3(-)+2y+5=8,所以y=

因此,方程组的解是

3.解方程组

分析:用加减法解,应选择消去系数绝对值的最小公倍数最小的未知数.

(1)+(3),得 5x+5y=25.(4)

(2)+(3)×2,得 5x+7y=31.(5)

由(4)与(5)组成方程组

解这个方程组,得

把x=2,y=3代入(1),得3×2+2×3+z=13,

所以 z=1.

因此,方程组的解是

4.解方程组

分析:题目中的y:x=3:2,即y=

法一:代入法

由(2)得x=y (4)

由(3)得z= (5)

将(4),(5)代入(1),得+y+y=111

所以 y=45.

把y=45分别代入(4)、(5),得x=30,z=36.

因此,方程组的解是

法二:技巧法

分析:y∶x=3∶2,即x∶y=2∶3=10∶15,而y∶z=5∶4=15∶12,故有x∶y∶z=10∶15∶12.因此,可设x=10k,y=15k,z=12k.将它们一起代入(1)中求出k值,从而求出x、y、z的值.

由(2),得x∶y=2∶3,

即x∶y=10∶15.

由(3),得y∶z=5∶4,

即y∶z=15∶12.

所以 x∶y∶z=10∶15∶12.

设x=10k,y=15k,z=12k,代入(1)中得10k+15k+12k=111,

所以 k=3.

故x=30,y=45,z=36.

因此,方程组的解是

5.解方程组

分析:1) 观察原方程组,我们准备先消去哪一个未知数?

2) 为什么要先消去z?注意到三个方程中都含有三个未知数,而在方程(3)中z一项的系数是-1,所以未

知数z易消.

3) 怎样在(1)和(2)中消去z?

4) 解这个关于x、y的方程组,求x和y的值是多少?

5) 怎样去求z的值?能不能把x=5, y=0代入(3)中去求z?

(1)+(3)×4 得17x+5y=85 … (4)

(3)×3-(2) 得7x-y=35 … (5)

(4)、(5)组成方程组

解得把x=5, y=0代入(3),得15-z=18,

所以z=-3, 所以

总结:解三元一次方程组的一般步骤:

1.利用代入法或加减法,把方程组中的某一个未知数消去,得到关于另外两个未知数的二元一次方程

组;2.解这个二元一次方程组,求出这两个未知数的值;

3.将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;

4.解这个一元一次方程,求出最后一个未知数的值;

5.将求得的三个未知数的值用“{”合写在一起,即可.

练习:1.解方程组

2.解方程组

3.已知方程组 的解使代数式x-2y+3z的值等于-10,求a的值.

练习答案

1. 分析:根据各方程中系数的特点,将方程(1)分别与方程(2)、方程(3)组成两组,利用加减法消去y比较简便.

(1)+(2), 有 5x-z=14 (4)

(1)+(3), 有 4x+3z=15 (5)

再解由(4)、(5)构成的二元一次方程组

(4)×3, 得15x-3z=42 (6)

(5)+(6),得19x=57, x=3.

把x=3代入(4),得z=1.

∴把x=3, z=1代入(3),得y=8.

因此,方程组的解是

注意:解三元一次方程组,要先根据各方程的特点,灵活地确定消元步骤和消元方法,不要盲目消元.

2.法-:代入法

由(1),得3y=2x, (4)

由(2)得 5z=y, (5)

把(4)和(5)代入(3),得,

解得y=10.

把y=10分别代入(4)和(5),得

因此,方程组的解是

法二:技巧法

由(1),得x∶y=15∶10(根据分数的基本性质),

由(2),得y∶z=10∶2.

∴ x∶y∶z=15∶10∶2.

设x=15k, y=10k, z=2k 并代入(3),

得15k+10k-2×2k=21,解得 k=1.

∴ x=15, y=10, z=2.

∴ 小结:此方程组是三元一次方程组,这类方程组一般有两种基本解法,一是将比例式化为等积式,把(1)变为,(2)变为,然后代入(3),可消去两个未知数x和z,得到关于y的一元一次方程;二是把方程(1)和(2)的两个比统一为x∶y∶z=15∶10∶2然后设每一份为k,即x=15k, y=10k, z=2k,代入方程(3)可求出k,进而求得x, y, z的值.

3.分析:由题意可知,此方程组中的a是已知数,x、y、z是未知数,先解方程组,求出x、y、z(含有a的代数式),然后把求得的x、y、z代入等式x-2y+3z=-10,可得关于a的一元一次方程.解这个方程,即可求得a的值.

法-:(2)-(1),得z-x=2a (4)

(3)+(4),得2z=6a, z=3a.

把z=3a分别代入(2)和(3),得y=2a, x=a.

∴把x=a, y=2a, z=3a代入x-2y+3z=-10,

得a-2×2a+3×3a=-10, 解得.

法二:技巧解法

(1)+(2)+(3),得2(x+y+z)=12a,

即x+y+z=6a (4)

(4)-(1),得z=3a;

(4)-(2),得x=a;

(4)-(3),得y=2a.

∴以下同解法-,略.

注意:当方程组中三个方程的未知数的系数都相同时,可以运用此题解法二中的技巧解这类三元一次方程组.

求解二元一次方程组格式,二元一次方程组,要有格式,求解

1楼 匿名用户 概念如果一个方程含有两个 未知数 并且所含未知项都为1次方 那么这个整式方程就叫做二元一次方程 有无穷个解 若加条件限定有有限个解 二元一次方程组 则一般有一个解 有时没有解 有时有无数个解 如一次函数中的平行 二元一次方程的一般形式 ax by c 0其中a b不为零 这就是二元一...

二元一次方程组的解法和概念,二元一次方程组的概念?

1楼 匿名用户 含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 把两个二元一次方程联合在一起,那么这两个方程就组成了一个二元一次方程组。 解法可以看以下内容。http wenku baidu view b546acd328ea81c758f578cd html 2楼 匿名用户...

解一元一次方程如何移项,方法,在解一元一次方程时,怎样移项

1楼 点点外婆 方程就好像是一个翘翘板,一定要保持平衡。 如x 3 5 为了解出x, 左边把3去掉,那么右边也要把3去掉, 所以好像x 3 3 5 3 因为一个方程两边同时减去或加上一个数,还是成立的, 于是x 2 平时写的时候, 式就不必写出来,于是就成了移项,就是把 3从左边移到右边,成了 3 ...