怎样证明四点共圆怎样证明四点共圆?5

2021-03-07 10:32:15 字数 5048 阅读 2002

1楼:手机用户

方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.

方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆. (若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)

方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)

方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆. 上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.

2楼:匿名用户

1.分别连接4点,然后做四条线的中垂线,看四条中垂线是不是同一交点,如果是就是四点共圆。

2.先用三点求出圆的方程,把第四个点坐标带进去看是否满足

如何证明四点共圆

3楼:磨智藩画

证明四点共圆有下述一些基本方法:

方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.

方法2把被证共圆的四点连成共底边的两个三角形,若能证明其两顶角为直角,从而即可肯定这四个点共圆.

方法3把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.

方法4把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

方法5把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.

方法6证被证共圆的点到某一定点的距离都相等,从而确定它们共圆

4楼:丙寄竹曾烟

方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.

方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.

(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)

方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)

方法5证被证伐恭崔枷诏磺措委胆莲共圆的点到某一定点的距离都相等,从而确定它们共圆.

上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.

5楼:有之桃吕赐

1.把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

2.把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.

3.证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.

6楼:匿名用户

四点共圆

证明四点共圆的基本方法

证明四点共圆有下述一些基本方法:

方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆。

方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆. (若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)

方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。

方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(根据相交弦定理的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆。(根据托勒密定理的逆定理)

方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆.

上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.

判定与性质:

圆内接四边形的对角和为180°,并且任何一个外角都等于它的内对角。

如四边形abcd内接于圆o,延长ab和dc交至e,过点e作圆o的切线ef,ac、bd交于p,则a+c=π,b+d=π,

角dbc=角dac(同弧所对的圆周角相等)。

角cbe=角ade(外角等于内对角)

△abp∽△dcp(三个内角对应相等)

ap*cp=bp*dp(相交弦定理)

eb*ea=ec*ed(割线定理)

ef*ef= eb*ea=ec*ed(切割线定理)

(切割线定理,割线定理,相交弦定理统称圆幂定理)

ab*cd+ad*cb=ac*bd(托勒密定理ptolemy)

弦切角定理

方法6同斜边的两个rt三角形的四个顶点共圆,其斜边为圆的直径

7楼:翰林文圣

根据圆内四边形的一些定理,它个逆定理也可判定四点共圆。

1、圆的内接四边形的两对角和是180度,反之,如果四边形的两对角和是180,那么四点共圆。

2、在圆里,同弦角相等。设a、b、c、d四点在圆上,明显,ab弦所对的角∠acb=∠adb。反之,如果∠acb=∠adb,那四点共圆。常用的就是这两个

8楼:匿名用户

(1)证明对角互补

(2)证明一个外角等于其内对角

(3)证明这四点到一点距离相等

(4)证明某一条边对同侧两点的张角相等(就是圆周角定理的逆定理)(5)相交弦定理逆定理(割线定理逆定理)

(6)托勒密定理逆定理

9楼:疯狂游戏

证明四个点所在的四边形对角互补

怎么证明四点共圆?

10楼:河传杨颖

方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。(可以说成:

若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)

方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。(可以说成:

若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)

扩展资料

圆的性质:

(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

(2)有关圆周角和圆心角的性质和定理

① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

圆心角计算公式: θ=(l/2πr)×360°=180°l/πr=l/r(弧度)。

即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

11楼:匿名用户

证明四点共圆有下述一些基本方法:

方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.

方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆. (若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径.)

方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.

方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(根据相交弦定理的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)

方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆.

上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.

12楼:匿名用户

a,b,c ,d四点共圆

用其中3点(a,b,c),形成1个圆

第4点(d)满足那个圆的方程, 那就能证明四点共圆

求证四点共圆的方法有哪些,证明四点共圆有哪些方法

1楼 匿名用户 1同底的两个三角形的除底边挨着的两个角相等的可以判定 圆周角 2圆内接四边形 一组对角都为90度的四边形四个点四点共圆 求证四点共圆的方法有哪些? 2楼 吹 风 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆 既连成的四边形三边中垂线有交点,即可肯定这四点共圆 3楼 匿名用户...

怎样确定四点共圆,四点共圆的判定和性质

1楼 西域牛仔王 1 如果四边形内对角互补,则四点共圆 2 如果一个外角等于内对角,则四点共圆。 四点共圆的判定和性质 2楼 所示无恒 判定定理 方法1 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。 可以说成 若线段同侧二点到线段...

在平面里证明四点共圆有什么常用方法

1楼 连天籁华筠 可以用反证法四点共圆的判定定理 方法1把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆 可以说成 若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆 方法2把被证共圆的四点连成四边形,若能证明其对角...