1楼:匿名用户
1.因式法。(都给他整成零。) 2.十字相乘法。(插一插。) 3.公式法。(负b正负根号b方减4ac比4a) 4.配方法(慢慢来)
解二元一次方程 公式法的公式是什么?
2楼:我是一个麻瓜啊
x=(-b±√(b2-4ac))/2a。
设一个一元二次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为一元二次方程所以a不能等于0。
求根公式为:x=(-b±√(b2-4ac))/2a 。
3楼:市锐象雁荷
二元一次方程没有公式法。
一元二次方程的公式法是:ax2+bx+c=0,(a≠0),
x=[-b±√(b2-4ac)]/2a .
4楼:姓永芬疏己
公式表达了用配方法解一般的一元二次方程
的结果。解一个具体的一元二次方程时,把各项系数直接带入求根公式,可避免配方过程而直接得出根,这种解一元二次方程的方法叫做
公式法。
5楼:匿名用户
二元一次方程有无数解二元一次方程组 课本上有两种解法第一种:代入消元法第二种:加减消元法常用第二种 比较简单一元二次方程有 公式法x= [ —b±√(b
6楼:匿名用户
x=(-b+-√b^-4ac)/2a
7楼:匿名用户
^^ax^2+bx+c=0 => x^2+(b/a)x+(c/a)x = 0
=>(x+b/2a)^2=b^2/[4(a^2)]-c/a=>(x+b/2a)^2=(b^2-4ac)/4a^2=>x+b/2a = [sqrt(b^2-4ac)]/2a=>x=[-b±√(b^2-4ac)]/2a
8楼:全能天启
δ=b2-4ac x=-b±√δ/2a
9楼:时光是个坏蛋
求方程组的解的过程,叫做解二元一次方程组。
[1]二元一次方程(1)概念:方程两边都是整式,含有两个未知数,并且含有未知数的项的次数都是1的方程,叫做二元一次方程.[2]你能区分这些方程吗?
5x+3y=75(二元一次方程);3x+1=8x(一元一次方程);2y+y=2(一元一次方程);2x-y=9(二元一次方程)。对二元一次方程概念的理解应注意以下几点:1等号两边的代数式是否是整式;2在方程中“元”是指未知数,‘二元’是指方程中含有两个未知数;3未知数的项的次数都是1,实际上是指方程中最高次项的次数为1,在此可与多项式的次数进行比较理解,切不可理解为两个未知数的次数都是1.
(2)二元一次方程的解使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一个解.对二元一次方程的解的理解应注意以下几点:1一般地,一个二元一次方程的解有无数个,且每一个解都是指一对数值,而不是指单独的一个未知数的值;2二元一次方程的一个解是指使方程左右两边相等的一对未知数的值;反过来,如果一组数值能使二元一次方程左右两边相等,那么这一组数值就是方程的解;3在求二元一次方程的解时,通常的做法是用一个未知数把另一个未知数表示出来,然后给定这个未知数一个值,相应地得到另一个未知数的值,这样可求得二元一次方程的一个解.
方程组(1)二元一次方程组:由两个二元一次方程所组成的一组方程,叫做二元一次方程组.[1](2)二元一次方程组的解:
二元一次方程组中两个方程的公共解,叫做二元一次方程组的解.对二元一次方程组的理解应注意:1方程组各方程中,相同的字母必须代表同一数量,否则不能将两个方程合在一起.
2怎样检验一组数值是不是某个二元一次方程组的解,常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则,如果这组数值不满足其中任一个方程,那么它就不是此方程组的解.代入消元(1)概念:
将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法.[3](2)代入法解二元一次方程组的步骤1选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;2将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.
);3解这个一元一次方程,求出未知数的值;4将求得的未知数的值代入1中变形后的方程中,求出另一个未知数的值;5用“{”联立两个未知数的值,就是方程组的解;6最后检验(代入原方程组中进行检验,方程是否满足左边=右边).例题:{x-y=3 1{3x-8y=42由1得x=y+333代入2得3(y+3)-8y=4y=1把y=1带入3得x=4则:
这个二元一次方程组的解{x=4{y=1加减消元(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.[4](2)加减法解二元一次方程组的步骤1利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;2再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);3解这个一元一次方程,求出未知数的值;4将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;5用“{”联立两个未知数的值,就是方程组的解;6最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
如:{5x+3y=91{10x+5y=122把1扩大2倍得到310x+6y=183-2得:10x+6y-(10x+5y)=18-12y=6再把y=带入1.
2或3中解之得:{x=-1.8{y=6重点难点本节重点内容是二元一次方程组的概念以及如何用代入法和加减法解二元一次方程组,难点是根据方程的具体形式选择合适的解法。
2方程的解编辑使二元一次方程两边的值相等的两个未知数的一组值,叫做二元一次方程的解。二元一次方程组的两个公共解,叫做一组二元一次方程组的解。二元一次方程有无数个解,除非题目中有特殊条件。
但二元一次方程组只有唯一的一组解,即x,y的值只有一个。也有特殊的,例如无数个解:{3x+4y=12 {x-y=2{6x+8y=24 {x+y=3无解:
{3x+4y=18{4y+3x=24消元法“消元”是解二元一次方程的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。
如:5x+6y=7 2x+3y=4,变为5x+6y=7 4x+6y=8[5]消元方法代入消元法,(常用)加减消元法,(常用)顺序消元法,(这种方法不常用)顺序是对的例子x-y=3 13x-8y=42由1得x=y+333代入2得3(y+3)-8y=4y=1所以x=4则:这个二元一次方程组的解x=4y=1二元一次方程常用解法解法一般来说有两种:
1.代入消元法:2,加减消元法.
这两种解法在初中数学教科书中有详细叙述这里就不在说了,我们来看一下教科书中没有的,但比较适用的几种解法(一)加减-代入混合使用的方法.例1,13x+14y=41 (1)14x+13y=40 (2)解:(2)-(1)得x-y=-1x=y-1 (3)把(3)代入(1)得13(y-1)+14y=4113y-13+14y=4127y=54y=2把y=2代入(3)得x=1所以:
x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例2,(x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:
两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。(3)另类换元例3,x:y=1:
45x+6y=29令x=t,y=4t方程2可写为:5t+6*4t=2929t=29t=1所以x=1,y=4方法总结1. 二元一次方程与一元一次方程有很多类似的地方,学习时可运用类比的思想方法,比较二元一次方程与一元一次方程有关概念的相同点和不同点.
这样,不但能加深对概念的理解,提高对“元”和“次”的认识,而且能够逐步培养类比分析和归纳、概括的能力.2. 方程组中的两个未知数一般是不能同时求出来的,必须先想办法消去一个未知数,把解方程组的问题转化为解一元一次方程的问题,这种思想方法就叫做“消元法”.
解二元一次方程组的基本思想方法就是通过消元将“二元”转化为“一元”. 代入法、加减法是解二元一次方程组的基本方法,必须灵活运用.二元一次方程组:
二元一次方程组如右图所示这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。(两式都写在大括号中)
二元一次方程求根公式?
10楼:摩羯啵啵波
设一个二元
一次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0.
求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a
扩展资料韦达定理说明了一元二次方程中根和系数之间的关系。
法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。 由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。
11楼:柿子的丫头
[-b+√(b^2-4ac)]/2a
[-b-√(b^2-4ac)]/2a
如果一个方程含有两个未知数,并且所含未知项都为一次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。如一次函数中的平行,。
二元一次方程的一般形式:ax+by+c=0其中a、b不为零。这就是二元一次方程的通俗定义。
二元一次方程组的通俗定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。专业定义:
一个含有两个未知数,并且未知项的指数都是1的整式方程,叫二元一次方程(linear equation of two unknowns)。
二元一次方程组专业定义:由两个二元一次方程所组成的方程组,叫二元一次方程组(system of linear equation of two unknowns)。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
标准二元一次方程组包含六个系数,两个未知数,形式为:
式1,ax+by=c
式2,a2x+b2y=c2
一般解法,消元:将方程组中的未知数个数由多化少,逐一解决. 二元一次方程组(y=1 x=1)
加减消元法:将方程组中的两个等式用相加或者是相减的方法,抵消其中一个未知数,从而达到消元的目的,将方程组中的未知数个数由多化少,逐一解决.
代入消元法:通过“代入”消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫做代入消元法,简称代入法。一般不会用到。
扩展资料
二元一次方程组的解法.
(1)代入消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中
的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代入法.
(2)加减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.
求解二元一次方程组的一般形式求俩公式
1楼 匿名用户 你的问题是关于一元二次函数的,而不是二元一次方程组。 2楼 司马子南 应该是ax2 bx c 0的方程根的判别式吧 b 2 4ac 3楼 匿名用户 3 x1 x2 b a 4 x1 x2 c a第一个问题没看懂 4楼 匿名用户 x1 x2 b 2a x1 x2 c y a 解二元一次...
求解二元一次方程组格式,二元一次方程组,要有格式,求解
1楼 匿名用户 概念如果一个方程含有两个 未知数 并且所含未知项都为1次方 那么这个整式方程就叫做二元一次方程 有无穷个解 若加条件限定有有限个解 二元一次方程组 则一般有一个解 有时没有解 有时有无数个解 如一次函数中的平行 二元一次方程的一般形式 ax by c 0其中a b不为零 这就是二元一...
二元一次方程组的解法和概念,二元一次方程组的概念?
1楼 匿名用户 含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 把两个二元一次方程联合在一起,那么这两个方程就组成了一个二元一次方程组。 解法可以看以下内容。http wenku baidu view b546acd328ea81c758f578cd html 2楼 匿名用户...