初一数学题(整式带入,求多项式的值)

2021-02-26 14:26:30 字数 9909 阅读 6593

1楼:r0你好吗

要先化简,利用整式的性质,因式分解 合并同类项,在把值带入精锐。

人教版数学合并同类项整式的题及答案 15

2楼:匿名用户

1)(3x-5y)-(6x+7y)+(9x-2y)

(2)2a-[3b-5a-(3a-5b)]

(3)(6m2n-5mn2)-6(m2n-mn2)

解:(1)(3x-5y)-(6x+7y)+(9x-2y)

=3x-5y-6x-7y+9x-2y (正确去掉括号)

=(3-6+9)x+(-5-7-2)y (合并同类项)

=6x-14y

(2)2a-[3b-5a-(3a-5b)] (应按小括号,中括号,大括号的顺序逐层去括号)

=2a-[3b-5a-3a+5b] (先去小括号)

=2a-[-8a+8b] (及时合并同类项)

=2a+8a-8b (去中括号)

=10a-8b

(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)

=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)

=(6-2)m2n+(-5+3)mn2 (合并同类项)

=4m2n-2mn2

例2.已知:a=3x2-4xy+2y2,b=x2+2xy-5y2

求:(1)a+b (2)a-b (3)若2a-b+c=0,求c。

解:(1)a+b=(3x2-4xy+2y2)+(x2+2xy-5y2)

=3x2-4xy+2y2+x2+2xy-5y2(去括号)

=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)

=4x2-2xy-3y2(按x的降幂排列)

(2)a-b=(3x2-4xy+2y2)-(x2+2xy-5y2)

=3x2-4xy+2y2-x2-2xy+5y2 (去括号)

=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)

=2x2-6xy+7y2 (按x的降幂排列)

(3)∵2a-b+c=0

∴c=-2a+b

=-2(3x2-4xy+2y2)+(x2+2xy-5y2)

=-6x2+8xy-4y2+x2+2xy-5y2 (去括号,注意使用分配律)

=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)

=-5x2+10xy-9y2 (按x的降幂排列)

例3.计算:

(1)m2+(-mn)-n2+(-m2)-(-0.5n2)

(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)

(3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2]

解:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)

=m2-mn-n2-m2+n2 (去括号)

=(-)m2-mn+(-+)n2 (合并同类项)

=-m2-mn-n2 (按m的降幂排列)

(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)

=8an+2-2an-3an-an+1-8an+2-3an (去括号)

=0+(-2-3-3)an-an+1 (合并同类项)

=-an+1-8an

(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]

=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)

=(1--+)(x-y)2 (“合并同类项”)

=(x-y)2

例4求3x2-2的值,其中x=2。

分析:由于已知所给的式子比较复杂,一般情况都应先化简整式,然后再代入所给数值x=-2,去括号时要注意符号,并且及时合并同类项,使运算简便。

解:原式=3x2-2 (去小括号)

=3x2-2 (及时合并同类项)

=3x2-2 (去中括号)

=3x2-2 (化简大括号里的式子)

=3x2+30x2+40x-2 (去掉大括号)

=33x2+40x-2

当x=-2时,原式=33×(-2)2+40×(-2)-2=132-80-2=50

例5.若16x3m-1y5和-x5y2n+1是同类项,求3m+2n的值。

解:∵16x3m-1y5和-x5y2n+1是同类项

∴对应x,y的次数应分别相等

∴3m-1=5且2n+1=5

∴m=2且n=2

∴3m+2n=6+4=10

本题考察我们对同类项的概念的理解。

例6.已知x+y=6,xy=-4,求: (5x-4y-3xy)-(8x-y+2xy)的值。

解:(5x-4y-3xy)-(8x-y+2xy)

=5x-4y-3xy-8x+y-2xy

=-3x-3y-5xy

=-3(x+y)-5xy

∵x+y=6,xy=-4

∴原式=-3×6-5×(-4)=-18+20=2

说明:本题化简后,发现结果可以写成-3(x+y)-5xy的形式,因而可以把x+y,xy的值代入原式即可求得最后结果,而没有必要求出x,y的值,这种思考问题的思想方法叫做整体代换,希望同学们在学习过程中,注意使用。

三、练习

(一)计算:

(1)a-(a-3b+4c)+3(-c+2b)

(2)(3x2-2xy+7)-(-4x2+5xy+6)

(3)2x2-

(二)化简

(1)a>0,b<0,|6-5b|-|3a-2b|-|6b-1|

(2)10, b<0

∴|6-5b|-|3a-2b|-|6b-1|

=6-5b-(3a-2b)-(1-6b)

=6-5b-3a+2b-1+6b=-3a+3b+5

(2)∵1

∴|1-a|+|3-a|+|a-5|=a-1+3-a+5-a=-a+7

(三)原式=-a2b-a2c= 2

(四)根据题意,x=-2,当x=-2时,原式=-

(五)-2(用整体代换)

3楼:匿名用户

俊狼猎英团队为您解答

4楼:匿名用户

额。。。。。。。蛋疼中

希望大家可以,帮我找一下,50道整式的加减运算和化简求值...最好带答案 谢谢~~~谢谢~~~~

5楼:匿名用户

自己去找吧

(一)填空

3.3ab-4ab+8ab-7ab+ab=______.

4.7x-(5x-5y)-y=______.

5.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.

6.-7x2+6x+13x2-4x-5x2=______.

7.2y+(-2y+5)-(3y+2)=______.

11.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.

12.2a-(3a-2b+2)+(3a-4b-1)=______.

13.-6x2-7x2+15x2-2x2=______.

14.2x-(x+3y)-(-x-y)-(x-y)=______.

16.2x+2y-[3x-2(x-y)]=______.

17.5-(1-x)-1-(x-1)=______.

18.( )+(4xy+7x2-y2)=10x2-xy.

19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.

21.已知a=x3-2x2+x-4,b=2x3-5x+3,计算a+b=______.

22.已知a=x3-2x2+x-4,b=2x3-5x+3,计算a-b=______.

23.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.

25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.

26.-(2x2-y2)-[2y2-(x2+2xy)]=______.

27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.

28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.

29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.

30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).

31.3a-(2a-3b)+3(a-2b)-b=______.

32.化简代数式x-[y-2x-(x+y)]等于______.

33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.

34.3x-[y-(2x+y)]=______.

35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.

36.已知x≤y,x+y-|x-y|=______.

37.已知x<0,y<0,化简|x+y|-|5-x-y|=______.

38.4a2n-an-(3an-2a2n)=______.

39.若一个多项式加上-3x2y+2x2-3xy-4得

2x2y+3xy2-x2+2xy,

则这个多项式为______.

40.-5xm-xm-(-7xm)+(-3xm)=______.

41.当a=-1,b=-2时,

[a-(b-c)]-[-b-(-c-a)]=______.

43.当a=-1,b=1,c=-1时,

-[b-2(-5a)]-(-3b+5c)=______.

44.-2(3x+z)-(-6x)+(-5y+3z)=______.

45.-5an-an+1-(-7an+1)+(-3an)=______.

46.3a-(2a-4b-6c)+3(-2c+2b)=______.

48.9a2+[7a2-2a-(-a2+3a)]=______.

50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______.

(二)选择

[ ]a.2;

b.-2;

c.-10;

d.-6.

52.下列各式中计算结果为-7x-5x2+6x3的是 [ ]

a.3x-(5x2+6x3-10x);

b.3x-(5x2+6x3+10x);

c.3x-(5x2-6x3+10x);

d.3x-(5x2-6x3-10x).

53.把(-x-y)+3(x+y)-5(x+y)合并同类项得 [ ]

a.(x-y)-2(x+y);

b.-3(x+y);

c.(-x-y)-2(x+y);

d.3(x+y).

54.2a-[3b-5a-(2a-7b)]等于 [ ]

a.-7a+10b;

b.5a+4b;

c.-a-4b;

d.9a-10b.

55.减去-3m等于5m2-3m-5的代数式是 [ ]

a.5(m2-1);

b.5m2-6m-5;

c.5(m2+1);

d.-(5m2+6m-5).

56.将多项式2ab-9a2-5ab-4a2中的同类项分别结合在一起,应为 [ ]

a.(9a2-4a2)+(-2ab-5ab);

b.(9a2+4a2)-(2ab-5ab);

c.(9a2-4a2)-(2ab+5ab);

d.(9a2-4a2)+(2ab-5ab).

57.当a=2,b=1时,-a2b+3ba2-(-2a2b)等于 [ ]

a.20;

b.24;

c.0;

d.16.

中,正确的选择是 [ ]

a.没有同类项;

b.(2)与(4)是同类项;

c.(2)与(5)是同类项;

d.(2)与(4)不是同类项.

59.若a和b均为五次多项式,则a-b一定是 [ ]

a.十次多项式;

b.零次多项式;

c.次数不高于五次的多项式;

d.次数低于五次的多项式.

60.-{[-(x+y)]}+{-[(x+y)]}等于 [ ]

a.0;

b.-2y;

c.x+y;

d.-2x-2y.

61.若a=3x2-5x+2,b=3x2-5x+6,则a与b的大小是

[ ]a.a>b;

b.a=b;

c.a

d.无法确定.

62.当m=-1时,-2m2-[-4m2+(-m2)]等于 [ ]

a.-7;

b.3;

c.1;

d.2.

63.当m=2,n=1时,多项式-m-[-(2m-3n)]+[-(-3m)-4n]等于 [ ]

a.1;

b.9;

c.3;

d.5.

[ ]65.-5an-an-(-7an)+(-3an)等于 [ ]

a.-16an;

b.-16;

c.-2an;

d.-2.

66.(5a-3b)-3(a2-2b)等于 [ ]

a.3a2+5a+3b;

b.2a2+3b;

c.2a3-b2;

d.-3a2+5a-5b.

67.x3-5x2-4x+9等于 [ ]

a.(x3-5x2)-(-4x+9);

b.x3-5x2-(4x+9);

c.-(-x3+5x2)-(4x-9);

d.x3+9-(5x2-4x).

[ ]69.4x2y-5xy2的结果应为 [ ]

a.-x2y;

b.-1;

c.-x2y2;

d.以上答案都不对.

(三)化简

70.(4x2-8x+5)-(x3+3x2-6x+2).

72.(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2).

73.-{2a2b-[3abc-(4ab2-a2b)]}.

74.(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b).

75.(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2).

76.(3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).

77.(4a-2b-c)-5a-[8b-2c-(a+b)].

78.(2m-3n)-(3m-2n)+(5n+m).

79.(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab).

80.xy-(2xy-3z)+(3xy-4z).

81.(-3x3+2x2-5x+1)-(5-6x-x2+x3).

83.3x-(2x-4y-6x)+3(-2z+2y).

84.(-x2+4+3x4-x3)-(x2+2x-x4-5).

85.若a=5a2-2ab+3b2,b=-2b2+3ab-a2,计算a+b.

86.已知a=3a2-5a-12,b=2a2+3a-4,求2(a-b).

87.2m-{-3n+[-4m-(3m-n)]}.

88.5m2n+(-2m2n)+2mn2-(+m2n).

89.4(x-y+z)-2(x+y-z)-3(-x-y-z).

90.2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).

92.2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2).

94.4x-2(x-3)-3[x-3(4-2x)+8].

(四)将下列各式先化简,再求值

97.已知a+b=2,a-b=-1,求3(a+b)2(a-b)2-5(a+b)2×(a-b)2的值.

98.已知a=a2+2b2-3c2,b=-b2-2c2+3a2,c=c2+2a2-3b2,求(a-b)+c.

99.求(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.

101.已知|x+1|+(y-2)2=0,求代数式5(2x-y)-3(x-4y)的值.

106.当p=a2+2ab+b2,q=a2-2ab-b2时,求p-[q-2p-(p-q)].

107.求2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中x=-3.

110.当x=-2,y=-1,z=3时,求5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.

113.已知a=x3-5x2,b=x2-6x+3,求a-3(-2b).

(五)综合练习

115.去括号:{-[-(a+b)]}-{-[-(a-b)]}.

116.去括号:-[-(-x)-y]-[+(-y)-(+x)].

117.已知a=x3+6x-9,b=-x3-2x2+4x-6,计算2a-3b,并把结果放在前面带“-”号的括号内.

118.计算下式,并把结果放在前面带“-”号的括号内:

(-7y2)+(-4y)-(-y2)-(+5y)+(-8y2)+(+3y).

119.去括号、合并同类项,将结果按x的升幂排列,并把后三项放在带有“-”号的括号内:

120.不改变下式的值,将其中各括号前的符号都变成相反的符号:(x3+3x2)-(3x2y-7xy)+(2y3-3y2).

121.把多项式4x2y-2xy2+4xy+6-x2y2+x3-y2的三次项放在前面带有“-”号的括号内,二次项放在前面带有“+”号的括号内,四次项和常数项放在前面带有“-”号的括号内.

122.把下列多项式的括号去掉,合并同类项,并将其各项放在前面带有“-”号的括号内,再求2x-2[3x-(5x2-2x+1)]-4x2的值,其中x=-1.

123.合并同类项:

7x-1.3z-4.7-3.2x-y+2.1z+5-0.1y.

124.合并同类项:5m2n+5mn2-mn+3m2n-6mn2-8mn.

126.去括号,合并同类项:

(1)(m+1)-(-n+m);

(2)4m-[5m-(2m-1)].

127.化简:2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}.

128.化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.

129.计算:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).

130.化简:a3-(a2-a)+(a2-a+1)-(1-a4+a3).

131.将x2-8x+2x3-13x2-2x-2x3+3先合并同类项,再求值,其中x=-4.

132.在括号内填上适当的项:[( )-9y+( )]+2y2+3y-4=11y2-( )+13.

133.在括号内填上适当的项:

(-x+y+z)(x+y-z)=[y-( )][y+( )].

134.在括号内填上适当的项:

(3x2+xy-7y2)-( )=y2-2xy-x2.

135.在括号内填上适当的项:

(1)x2-xy+y-1=x2-( );

(2)[( )+6x-7]-[4x2+( )-( )]=x2-2x+1.

136.计算4x2-3[x+4(1-x)-x2]-2(4x2-1)的值.

137.化简:

138.用竖式计算

(-x+5+2x4-6x3)-(3x4+2x2-3x3-7).

139.已知a=11x3+8x2-6x+2,b=7x3-x2+x+3,求2(3a-2b).

140.已知a=x3-5x2,b=x3-11x+6,c=4x-3,求

(1)a-b-c;

(2)(a-b-c)-(a-b+c).

141.已知a=3x2-4x3,b=x3-5x2+2,计算

(1)a+b;

(2)b-a.

142.已知x<-4,化简|-x|+|x+4|-|x-4|.

146.求两代数式-1.56a+3.2a3-0.

47,2.27a3-0.02a2+4.

03a+0.53的差与6-0.15a+3.

24a2+5.07a3的和.

-0.3,y=-0.2.

150.已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3xy-z2-8xz-2x2的值.

初一上学期的代数式求值题(含答案)

1楼 米兵 初一数学竞赛专题培训代数式求值解题 如果x y 2z 且x不等于y,则2x x y y y z 是分数线 前数是分子 a 4 b 6 c 8 d10 若a b c 0,则a 1 b 1 c b 1 a 1 c c 1 b 1 a 的值为 设m的2次方 m 1 0,则m的3次方 2乘以m的...

分式x+1分之x+4的值是整数求正整数x的值为

1楼 精锐长宁数学组 先化简下,原式 1 3 x 1 所以x 1分之3是整数时的解就是原式的解 即x 1 1或 3四种情况, 因为x是正整数,所以x 2 当x为何整数时,分式4 2x 1的值为正整数?分式x 2 x 1的值是整数 2楼 笑水嫣然 x 2 或1时 x 2 x 1 k时 然后解x 2 k...

初一数学整式的加减怎样去括号我是傻

1楼 匿名用户 去括号法则 括号前面是加号时,去掉括号,括号内的算式不变。 括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。 法则的依据实际是乘法分配律 注 要注意括号前面的符号 它是去括号后括号内各项是否变号的依据 去括号时应将括号前的符号连同括号一起去掉 要注意 括号前面是 时 去掉括...