关于定积分计算问题,定积分的运算公式

2021-02-26 10:04:42 字数 3558 阅读 1953

1楼:

牛顿莱bai布尼兹公式,若f(x)在[a,b]上连

定积分的运算公式

2楼:王一一

具体计算公式参照如图:

定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。

积分分类

不定积分(indefinite integral)

即已知导数求原函数。若f′(x)=f(x),那么[f(x)+c]′=f(x).(c∈r c为常数).

也就是说,把f(x)积分,不一定能得到f(x),因为f(x)+c的导数也是f(x)(c是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用f(x)+c代替,这就称为不定积分。

即如果一个导数有原函数,那么它就有无

限多个原函数。

定积分 (definite integral)

定积分就是求函数f(x)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(x)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。

这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;

若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

积分在实际问题中的应用

(一)经济问题

某工厂技术人员告诉他的老板某种产品的总产量关于时间的变化率为r′(t)=50+5t-0.6t2,现在老板想知道4个小时内他的工人到底能生产出多少产品。

如果我们假设这段时间为[1,5],生产的产品总量为r,则总产量r在t时刻的产量,即微元dr=r′(t)dt=(50+5t-0.6t2)dt。因此,在[1,5]内总产量为

(二)压缩机做功问题

在生产生活过程中,压缩机做功问题由于关系到能源节约问题,因此备受大家关注。假设地面上有一个底半径为5 m, 高为20 m的圆柱形水池, 往里灌满了水。

如果要把池中所有的水抽出,则需要压缩机做多少功?此时,由于考虑到池中的水被不间断地抽出,可将抽出的水分割成不同的水层。

同时, 把每层的水被抽出时需要的功定义为功微元。这样,该问题就可通过微元法解决了。

具体操作如下: 将水面看做是原点所在的位置, 竖直向下做x轴。当水平从x处下降了dx时, 我们近似地认为厚度为dx的这层水都下降了x,因而这层水所做的功微元dw≈25πxdx(j)。

当水被完全抽出, 池内的水从20 m下降为 0 m。

根据微元法, 压缩机所做的功为w=25πxdx=15708(j) 。

(三)液体静压力问题

在农业生产过程中,为了保证农田的供水,常常需要建造各种储水池。因此,我们需要了解有关静压力问题。

在农田中有一个宽为 4 m, 高为3 m, 且顶部在水下 5 m的闸门, 它垂直于水面放置。此闸门所受的水压力为多少?我们可以考虑将闸门分成若干个平行于水面的小长方体。

此时, 闸门所受的压力可看做是小长方体所受的压力总和。 当小长方体的截面很窄的情况下, 可用其截面沿线上的压强来近似代替各个点处的压强。 任取一小长方体,其压强可表示为1x=x, 长方体截面的面积为δa=4dx, 从而δf≈x4dx,

利用微元法求解定积分,还可以解决很多实际工程问题,关键是要掌握好换“元” 的技巧。这就需要我们解决问题时,要特别注意思想方法。思想方法形式多种多样,如以直代曲、以均匀代不均匀、以不变代变化等。

3楼:白天大仁

∫(a,b)[f(x)±g(x)]dx=∫(a,b)f(x)±∫(a,b)g(x)dx∫(a,b)kf(x)dx=k∫(a,b)f(x)dx

1、当a=b时,

2、当a>b时,

3、常数可以提到积分号前。

4、代数和的积分等于积分的代数和。

5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有

又由于性质2,若f(x)在区间d上可积,区间d中任意c(可以不在区间[a,b]上)满足条件。

6、如果在区间[a,b]上,f(x)≥0,则

7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ε在(a,b)内使

拓展资料

一般定理

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

牛顿-莱布尼茨公式

4楼:基拉的祷告

答案有些问题,你的回答是正确的,这里有一点就是定义域x不等于0,所以在0点无意义,通过奇偶性也能判断该函数为奇函数,积分区域又对称,所以原函数积分为0,希望能够帮到你

5楼:匿名用户

第一个黑线部分是f(x)关于x求导得到的。

第二个黑线是把上面的由积分中值定理得到的式子代入之前的f'(x)右边,消去∫f(t)dt,化简之后的结果。

下面黑色部分是用了一次如下的微分中值定理

f(b)-f(a)=f'(c)(b-a),这里b是x,a是ξ,c在(a,b)中间,这道题是用的η,便成了

f(x)-f(ξ)=f'(η)(x-ξ)

根据条件,在(a,b)上都是f'(x)≤0,而η∈(ξ,x)包含于(a,b),自然f'(η)≤0,故而f'(x)≤0

6楼:臭弟弟初八

|1)∫0dx=c 不定积分的

定义2)∫x^udx=(x^(u+1))/(u+1)+c 3)∫1/xdx=ln|x|+c 4)∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c

7楼:匿名用户

多次应用微积中值定理

关于不定积分的运算

8楼:匿名用户

不定bai积分计算的是原函数(得出的du结果是一个式子)

zhi定积分计算的是dao

具体的数值(内得出的借给是一个具容

体的数字)

不定积分是微分的逆运算

而定积分是建立在不定积分的基础上把值代进去相减

积分 积分,时一个积累起来的分数,现在网上,有很多的积分活动.象各种电子邮箱,**等.

在微积分中

积分是微分的逆运算,即知道了函数的导函数,反求原函数.在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的.

一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数.

其中:[f(x) + c]' = f(x)

一个实变函数在区间[a,b]上的定积分,是一个实数.它等于该函数的一个原函数在b的值减去在a的值.

定积分我们知道,用一般方法,y=x^2不能求面积(以x轴,y=x^2,x=0,x=1为界)

不定积分问题,不定积分问题计算

1楼 匿名用户 在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 f ,即f f。不定积分和定积分间的关系由微积分基本定理确定。其中f是f的不定积分。 根据牛顿 莱布尼兹公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。现实应用主要在工程领域 算水压力 结...

关于定积分面积和二重积分,定积分和二重积分计算面积的区别

1楼 本题求平面图形面积,用定积分即可,如果用二重积分,被积函数f x,y 1也可。 定积分和二重积分计算面积的区别 2楼 匿名用户 定积分只有一个积分变量 被积函数一般是一次的 积分区域只是一个区间 也就是数轴上的一段 而二重积分可以有两个积分变量 被积函数一般为二次 积分区域是平面上的一个有界闭...

利用定积分的定义计算下列定积分,利用定积分定义计算下列积分

1楼 匿名用户 写成a 1,b 2也没错,但是此时函数f x 根号 x ,而不是根号 1 x 。你再好好看看。 利用定积分定义计算下列积分 2楼 社工制编组 这个题目很基础的,多看几遍书一定能做出来,要相信自己 3楼 匿名用户 s of pilot knobs th 利用定积分定义计算下列极限 4楼...