1楼:宛丘山人
令 (x-a)/(b-a)=t x=(b-a)t+a dx=(b-a)dt
∫[a,b]f(x)dx
=∫[0,1]f[(b-a)t+a](b-a)dt=(b-a) ∫[0,1]f[(b-a)t+a]dt=(b-a) ∫[0,1]f[a+(b-a)x]dx
设f(x)是以t为周期的连续函数,证明:∫(a为下限,a+t为上限)f(x)dx=∫f(x)dx
2楼:晓龙修理
证明过程如下:
证明:∫
(a~a+t) f(x)dx=∫(0~t) f(x)dx
∫(a~a+t)f(x)dx=∫(a~0)f(x)dx + ∫(0~t)f(x)dx + ∫(t~a+t)f(x)dx
对∫(t~a+t)f(x)dx,令x=t+t,则∫(t~a+t)f(x)dx=∫(0~a)f(t+t)dt=∫(0~a)f(t)dt
所以,∫(a~a+t)f(x)dx
=∫(a~0)f(x)dx + ∫(0~t)f(x)dx + ∫(t~a+t)f(x)dx
=∫(a~0)f(x)dx + ∫(0~t)f(x)dx + ∫(0~a)f(x)dx
=∫(0~t)f(x)dx
证明函数极限的方法:
利用函数连续性,直接将趋向值带入函数自变量中,此时要要求分母不能为0。
当分母等于零时,就不能将趋向值直接代入分母,因式分解,通过约分使分母不会为零。若分母出现根号,可以配一个因子使根号去除。
如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
采用洛必达法则求极限,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。符合形式的分式的极限等于分式的分子分母同时求导。
3楼:
证明:∫(a~
a+t) f(x)dx=∫(0~t) f(x)dx
∫(a~a+t)f(x)dx=∫(a~0)f(x)dx + ∫(0~t)f(x)dx + ∫(t~a+t)f(x)dx
对∫(t~a+t)f(x)dx,令x=t+t,则∫(t~a+t)f(x)dx=∫(0~a)f(t+t)dt=∫(0~a)f(t)dt
所以,∫(a~a+t)f(x)dx
=∫(a~0)f(x)dx + ∫(0~t)f(x)dx + ∫(t~a+t)f(x)dx
=∫(a~0)f(x)dx + ∫(0~t)f(x)dx + ∫(0~a)f(x)dx
=∫(0~t)f(x)dx
设f(x)在[a,b]上连续,且f(x)>0,证明:∫b a f(x)dx*∫b a 1/f(x)dx≥(b-a)^2
4楼:老von子
令f(x)=(∫b a f(t)dt ) x^2 -(2∫b a 1dt)x +(∫b a 1/f(t)dt),则:
f(x)=∫b a f(t) x^2 dt -2∫b a xdt +∫b a 1/f(t)dt
=∫b a [f(t) x^2 -2x +1/f(t)]dt=∫b a dt ≥0
故这个关于x的二次函数f(x)的判别式应小于等于0,即:
△=(2∫b a 1dt)^2 -4(∫b a f(t)dt )(∫b a 1/f(t)dt)=4(b-a)^2 -4(∫b a f(t)dt )(∫b a 1/f(t)dt)≤0
即:(∫b a f(t)dt )(∫b a 1/f(t)dt)≥(b-a)^2
把t换成x即为要证明的结论
注:实际上这就是积分形式的柯西不等式。
设函数f(x)在区间上连续,证明:f(x)dx f(a+b-x)dx
1楼 发了疯的大榴莲 证明 做变量替换a b x t 则dx dt 当x b t a 当x a t b 于是 a b f a b x dx b a f t dt a b f t dt a b f x dx 即 a b f x dx a b f a b x dx 2楼 匿名用户 因为积分区域d关于直线...