什么是自旋?粒子自旋和星体旋转是一样的道理么

2021-03-18 15:13:47 字数 5754 阅读 2843

1楼:匿名用户

粒子有一种称为自旋的性质。自旋可以设想成绕着一个轴自转的小陀螺。但这可能

会引起误会,因为量子力学告诉我们,粒子并没有任何很好定义的轴。粒子的自旋真正

告诉我们的是,从不同的方向看粒子是什么样子的。一个自旋为0的粒子像一个圆点:从

任何方向看都一样(图5.1-i)。而自旋为1的粒子像一个箭头:从不同方向看是不同的

(图5.1-ii)。只有把当它转过完全的一圈(360°)时,这粒子才显得是一样。自旋为

2的粒子像个双头的箭头(图5.1-iii):只要转过半圈(180°),看起来便是一样的

了。类似地,更高自旋的粒子在旋转了整圈的更小的部分后,看起来便是一样的。所有

这一切都是这样的直截了当,但惊人的事实是,有些粒子转过一圈后,仍然显得不同,

你必须使其转两整圈!这样的粒子具有1/2的自旋。

宇宙间所有已知的粒子可以分成两组:组成宇宙中的物质的自旋为1/2的粒子;在

物质粒子之间引起力的自旋为0、1和2的粒子。物质粒子服从所谓的泡利不相容原理。这

是奥地利物理学家沃尔夫冈·泡利在1925年发现的,他并因此获得1945年的诺贝尔奖。

他是个模范的理论物理学家,有人这样说,他的存在甚至会使同一城市里的实验出毛病!

泡利不相容原理是说,两个类似的粒子不能存在于同一个态中,即是说,在不确定性原

理给出的限制内,它们不能同时具有相同的位置和速度。不相容原理是非常关键的,因

为它解释了为何物质粒子在自旋为0、1和2的粒子产生的力的影响下不会坍缩成密度非常

之高的状态的原因:如果物质粒子几乎在相同位置,则它们必须有不同的速度,这意味

着它们不会长时间存在于同一处。如果世界创生时不相容原理不起作用,夸克将不会形

成不相连的、很好定义的质子和中子,进而这些也不可能和电子形成不相连的、很好定

义的原子。所有它们都会坍缩形成大致均匀的稠密的“汤”。

直到保尔·狄拉克在1928年提出一个理论,人们才对电子和其他自旋1/2的粒子有

了相当的理解。狄拉克后来被选为剑桥的卢卡逊数学教授(牛顿曾经担任这一教授位置,

目前我担任此一位置)。狄拉克理论是第一种既和量子力学又和狭义相对论相一致的理

论。它在数学上解释了为何电子具有1/2的自旋,也即为什么将其转一整圈不能、而转

两整圈才能使它显得和原先一样。它并且预言了电子必须有它的配偶——反电子或正电

子。1932年正电子的发现证实了狄拉克的理论,他因此获得了1933年的诺贝尔物理奖。

现在我们知道,任何粒子都有会和它相湮灭的反粒子。(对于携带力的粒子,反粒子即

为其自身。)也可能存在由反粒子构成的整个反世界和反人。然而,如果你遇到了反你,

注意不要握手!否则,你们两人都会在一个巨大的闪光中消失殆尽。为何我们周围的粒

子比反粒子多得多?这是一个极端重要的问题,我将会在本章的后部分回到这问题上来。

在量子力学中,所有物质粒子之间的力或相互作用都认为是由自旋为整数0、1或2的

粒子承担。物质粒子——譬如电子或夸克——发出携带力的粒子,由于发射粒子所引起

的**,改变了物质粒子的速度。携带力的粒子又和另一物质粒子碰撞从而被吸收。这

碰撞改变了第二个粒子的速度,正如同两个物质粒子之间存在过一个力。

携带力的粒子不服从泡利不相容原理,这是它的一个重要的性质。这表明它们能被

交换的数目不受限制,这样就可以产生根强的力。然而,如果携带力的粒子具有很大的

质量,则在大距离上产生和交换它们就会很困难。这样,它们所携带的力只能是短程的。

另一方面,如果携带力的粒子质量为零,力就是长程的了。在物质粒子之间交换的携带

力的粒子称为虚粒子,因为它们不像“实”粒子那样可以用粒子探测器检测到。但我们

知道它们的存在,因为它们具有可测量的效应,即它们引起了物质粒子之间的力,并且

自旋为0、1或2的粒子在某些情况下作为实粒子而存在,这时它们可以被直接探测到。对

我们而言,此刻它们就呈现出为经典物理学家所说的波动形式,例如光波和引力波;当

物质粒子以交换携带力的虚粒子的形式而相互作用时,它们有时就可以被发射出来。

(例如,两个电子之间的电排斥力是由于交换虚光子所致,这些虚光子永远不可能被检

测出来;但是如果一个电子穿过另一个电子,则可以放出实光子,它以光波的形式为我

们所探测到。)

携带力的粒子按照其携带力的强度以及与其相互作用的粒子可以分成四种。必须强

调指出,将力划分成四种是种人为的方法;它仅仅是为了便于建立部分理论,而并不别

具深意。大部分物理学家希望最终找到一个统一理论,该理论将四种力解释为一个单独

的力的不同方面。确实,许多人认为这是当代物理学的首要目标。最近,将四种力中的

三种统一起来已经有了成功的端倪——我将在这章描述这些内容。而关于统一余下的另

一种力即引力的问题将留到以后再讨论。

第一种力是引力,这种力是万有的,也就是说,每一粒子都因它的质量或能量而感

受到引力。引力比其他三种力都弱得多。它是如此之弱,以致于若不是它具有两个特别

的性质,我们根本就不可能注意到它。这就是,它会作用到非常大的距离去,并且总是

吸引的。这表明,在像地球和太阳这样两个巨大的物体中,所有的粒子之间的非常弱的

引力能迭加起来而产生相当大的力量。另外三种力或者由于是短程的,或者时而吸引时

而排斥,所以它们倾向于互相抵消。以量子力学的方法来研究引力场,人们把两个物质

粒子之间的引力描述成由称作引力子的自旋为2的粒子所携带。它自身没有质量,所以所

携带的力是长程的。太阳和地球之间的引力可以归结为构成这两个物体的粒子之间的引

力子交换。虽然所交换的粒子是虚的,它们确实产生了可测量的效应——它们使地球绕

着太阳公转!实引力构成了经典物理学家称之为引力波的东西,它是如此之弱——并且

要探测到它是如此之困难,以致于还从来未被观测到过。

另一种力是电磁力。它作用于带电荷的粒子(例如电子和夸克)之间,但不和不带

电荷的粒子(例如引力子)相互作用。它比引力强得多:两个电子之间的电磁力比引力

大约大100亿亿亿亿亿(在1后面有42个0)倍。然而,共有两种电荷——正电荷和负电荷。

同种电荷之间的力是互相排斥的,而异种电荷则互相吸引。一个大的物体,譬如地球或

太阳,包含了几乎等量的正电荷和负电荷。由于单独粒子之间的吸引力和排斥力几乎全

抵消了,因此两个物体之间纯粹的电磁力非常小。然而,电磁力在原子和分子的小尺度

下起主要作用。在带负电的电子和带正电的核中的质子之间的电磁力使得电子绕着原子

的核作公转,正如同引力使得地球绕着太阳旋转一样。人们将电磁吸引力描绘成是由于

称作光子的无质量的自旋为1的粒子的交换所引起的。而且,这儿所交换的光子是虚粒子。

但是,电子从一个允许轨道改变到另一个离核更近的允许轨道时,以发射出实光子的形

式释放能量——如果其波长刚好,则为肉眼可以观察到的可见光,或可用诸如照相底版

的光子探测器来观察。同样,如果一个光子和原子相碰撞,可将电子从离核较近的允许

轨道移动到较远的轨道。这样光子的能量被消耗殆尽,也就是被吸收了。

第三种力称为弱核力。它制约着放射性现象,并只作用于自旋为1/2的物质粒子,

而对诸如光子、引力子等自旋为0、1或2的粒子不起作用。直到1967年伦敦帝国学院的阿

伯达斯·萨拉姆和哈佛的史蒂芬·温伯格提出了弱作用和电磁作用的统一理论后,弱作

用才被很好地理解。此举在物理学界所引起的震动,可与100年前马克斯韦统一了电学和

磁学并驾齐驱。温伯格——萨拉姆理论认为,除了光子,还存在其他3个自旋为1的被统

称作重矢量玻色子的粒子,它们携带弱力。它们叫w+(w正)、w-(w负)和z0(z零),

每一个具有大约100吉电子伏的质量(1吉电子伏为10亿电子伏)。上述理论展现了称作

自发对称破缺的性质。它表明在低能量下一些看起来完全不同的粒子,事实上只是同一

类型粒子的不同状态。在高能量下所有这些粒子都有相似的行为。这个效应和轮赌盘上

的轮赌球的行为相类似。在高能量下(当这轮子转得很快时),这球的行为基本上只有

一个方式——即不断地滚动着;但是当轮子慢下来时,球的能量就减少了,最终球就陷

到轮子上的37个槽中的一个里面去。换言之,在低能下球可以存在于37个不同的状态。

如果由于某种原因,我们只能在低能下观察球,我们就会认为存在37种不同类型的球!

在温伯格——萨拉姆理论中,当能量远远超过100吉电子伏时,这三种新粒子和光子

的行为方式很相似。但是,大部份正常情况下能量要比这低,粒子之间的对称就被破坏

了。w+、w-和z0得到了大的质量,使之携带的力变成非常短程。萨拉姆和温伯格提出

此理论时,很少人相信他们,因为还无法将粒子加速到足以达到产生实的w+、w-和z0

粒子所需的一百吉电子伏的能量。但在此后的十几年里,在低能量下这个理论的其他预

言和实验符合得这样好,以至于他们和也在哈佛的谢尔登·格拉肖一起被授予1979年的

物理诺贝尔奖。格拉肖提出过一个类似的统一电磁和弱作用的理论。由于1983年在cern

(欧洲核子研究中心)发现了具有被正确预言的质量和其他性质的光子的三个带质量的

伴侣,使得诺贝尔委员会避免了犯错误的难堪。领导几百名物理学家作出此发现的卡拉

·鲁比亚和发展了被使用的反物质储藏系统的cern工程师西蒙·范德·米尔分享了1984

年的诺贝尔奖。(除非你已经是巅峰人物,当今要在实验物理学上留下痕迹极其困难!)

第四种力是强作用力。它将质子和中子中的夸克束缚在一起,并将原子中的质子和

中子束缚在一起。一般认为,称为胶子的另一种自旋为1的粒子携带强作用力。它只能与

自身以及与夸克相互作用。强核力具有一种称为禁闭的古怪性质:它总是把粒子束缚成

不带颜色的结合体。由于夸克有颜色(红、绿或蓝),人们不能得到单独的夸克。反之,

一个红夸克必须用一串胶子和一个绿夸克以及一个蓝夸克联结在一起(红+绿+蓝=白)。

这样的三胞胎构成了质子或中子。其他的可能性是由一个夸克和一个反夸克组成的对

(红+反红,或绿+反绿,或蓝+反蓝=白)。这样的结合构成称为介子的粒子。介子

是不稳定的,因为夸克和反夸克会互相湮灭而产生电子和其他粒子。类似地,由于胶子

也有颜色,色禁闭使得人们不可能得到单独的胶子。相反地,人们所能得到的胶子的团,

其迭加起来的颜色必须是白的。这样的团形成了称为胶球的不稳定粒子。

色禁闭使得人们观察不到一个孤立的夸克或胶子,这事实使得将夸克和胶子当作粒

子的整个见解看起来有点玄学的味道。然而,强核力还有一个叫做渐近自由的性质,它

使得夸克和胶子成为定义得很好的概念。在正常能量下,强核力确实很强,它将夸克很

紧地捆在一起。但是,大型粒子加速器的实验指出,在高能下强作用力变得弱得多,夸

克和胶子的行为就像自由粒子那样。图5.2是张一个高能质子和一个反质子碰撞的**。

碰撞产生了几个几乎自由的夸克,并引起了在图中可以看到的“喷射”轨迹。

一个质子和一个反质子在高能下碰撞,产生了一对几乎自由的夸克。

对电磁和弱力统一的成功,使许多人试图将这两种力和强核力合并在所谓的大统一

理论(或gut)之中。这名字相当夸张,所得到的理论并不那么辉煌,也没能将全部力都

统一进去,因为它并不包含引力。它们也不是真正完整的理论,因为它们包含了许多不

能从这理论中预言而必须人为选择去适合实验的参数。尽管如此,它们可能是朝着完全

的统一理论推进的一步。gut的基本思想是这样:正如前面提到的,在高能量时强核力变

弱了;另一方面,不具有渐近自由性质的电磁力和弱力在高能量下变强了。在非常高的

叫做大统一能量的能量下,这三种力都有同样的强度,所以可看成一个单独的力的不同

方面。在这能量下,gut还预言了自旋为1/2的不同物质粒子(如夸克和电子)也会基本

上变成一样,这样导致了另一种统一。

图形旋转的三要素是旋转中心点和,旋转的三要素是什么?

1楼 百度用户 图形旋转的三要素是旋转中心点 方向和度数 故答案为 方向 度数 旋转的三要素是什么? 2楼 匿名用户 图形旋转的三要素是旋转中心点 方向和度数。 三要素 定点 旋转中心 旋转方向 旋转角。注意 三要素中只要任意改变一个,图形就会不一样。 3楼 鐎涙床鐑熼洦 图形的旋转的要素是 旋转中...

对旋度再取旋度的物理意义是什么,旋度的旋度的物理意义

1楼 旋度本来就是个数学概念嘛,不一定非要有物理意义 旋度的旋度的物理意义 2楼 木小木 设想将闭合曲线缩小到其内某一点附近,那么以闭合曲线l为界的面积也将逐渐减小 一般说来,这两者的比值有一极限值,记作即单位面积平均环流的极限。它与闭合曲线的形状无关,但显然依赖于以闭合曲线为界的面积法线方向且通常...

旋转的三要素是什么,图形旋转的三要素是( )、( )、( )。

1楼 百度用户 笨啊 这么简单 旋转中心点 旋转角度 看看要转几度 旋转方向 看看是顺时针还是逆时针 2楼 匿名用户 旋转中心,旋转角度,旋转方向 图形旋转的三要素是 。 3楼 游萱斐水 三要素 旋转中心 旋转方向 旋转角度 特征 对应点到旋转中心的距离相等 对应点与旋转中心所连线段的夹角等于旋转角...