1楼:nm牛虻
二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。每个方程可化简为ax+by=c的形式。
对二元一次方程组的理解应注意:
1、方程组各方程中,相同的字母必须代表同一数量,否则不能将两个方程合在一起。
2、怎样检验一组数值是不是某个二元一次方程组的解,常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则如果这组数值不满足其中任一个方程,那么它就不是此方程组的解。
扩展资料
一、常见解法
1、代入消元法
将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法。
2、加减消元法
当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法。
二、例题解析
例:解方程组 :x+y=5① 6x+13y=89②
解:由①得 x=5-y③
把③代入②,得6(5-y)+13y=89
解得 y=59/7
把y=59/7代入③,得x=5-59/7
解得x=-24/7
∴ x=-24/7,y=59/7 为方程组的解。
2楼:专业送餐20年
1.定义
由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组。
一般地,二元一次方程组的两个二元一次方程的公共解,叫做二元一次方程组的解。
2.一般形式
(其中a1,a2,b1,b2不同时为零)
3.求解方法
消元法、换元法、设参数法、图像法、解向量法。
3楼:匿名用户
有两个方程, 其中共含有两个未知数(每个方程至少有一个未知数), 且每个未知数的次数为"1",这样的两个相互关联的方程称为二元一次方程组.
4楼:秋天的海绵宝宝
含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
所以,两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
例:解方程组 : x+y=5① 6x+13y=89②例:解方程组: x+y=9① x-y=5②希望回答对你有帮助!望采纳。
5楼:匿名用户
含有两个未知数,且每项未知数次数最高是一次的方程组(两个或者两个以上方程)
6楼:匿名用户
就是两个变量,次数最高位一次。
如:x+2y+3=0…………(1)
2x+y-=0…………(2)
(1)(2)这就叫二元一次方程组。
二元一次方程组的概念
7楼:小小芝麻大大梦
二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。每个方程可化简为ax+by=c的形式。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
求解方法:
利用数的整除特性结合代人排除的方法去求解。(可利用数的尾数特性,也可利用数的奇偶性。)
扩展资料:
用代入消元法的一般步骤是:
1.选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式;
2.将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;
3.解这个一元一次方程,求出 x 或 y 值;
4.将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;
5.把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
加减消元法
1.在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;
2.在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;
3.解这个一元一次方程;
4.将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;
5.把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
8楼:栋忆丹贰游
二元一次
方程组1.定义
由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组。
一般地,二元一次方程组的两个二元一次方程的公共解,叫做二元一次方程组的解。
2.一般形式
(其中a1,a2,b1,b2不同时为零)
3.求解方法
消元法、换元法、设参数法、图像法、解向量法。
9楼:雷千儿侍周
最好变一下哈!比如以下方程组就可以:
{x+y=-1
{2x+3y=0
易知x=-3,y=2是该二元一次方程组的解,满足题意。
所以上述方程组即为所求。
10楼:秋天的海绵宝宝
含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
所以,两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
例:解方程组 : x+y=5① 6x+13y=89②例:解方程组: x+y=9① x-y=5②希望回答对你有帮助!望采纳。
二元一次方程组的概念?
11楼:匿名用户
如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程,有无数个解,若加条件限定有有限个解。二元一次方程的一般形式:ax+by+c=0其中a、b不为零,这就是二元一次方程的定义。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组定义:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有不少于两个方程。二元一次方程组的解:
两个二元一次方程的公共解,叫做二元一次方程组的解。二元一次方程组的解,一般有一个解,有时没有解,有时有无数个解,如一次函数中的平行。
二元一次方程组解法,一般是将二元一次方程消元,变成一元一次方程求解。有两种消元方式:
1.加减消元法:将方程组中的两个等式用相加或者是相减的方法,抵消其中一个未知数,从而达到消元的目的,将方程组中的未知数个数由多化少,逐一解决。
2.代入消元法:通过"代入"消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫做代入消元法,简称代入法。
重点难点
本节重点内容是二元一次方程组的概念以及如何用代入法和加减法解二元一次方程组,难点是根据方程的具体形式选择合适的解法。
中文名称
二元一次方程
外文名称
linear equation in two unknowns
定义含有两个未知数,且未知数的系数是一次的方程
学科数学
特点一般有一个解,有时无解或许多个
二元一次方程组的概念及应用
12楼:匿名用户
含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
所以,两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
例:解方程组 : x+y=5① 6x+13y=89②
例:解方程组: x+y=9① x-y=5②
13楼:匿名用户
二元一次方程 是指含有两个未知数,并且所含未知数的项的次数都是1的方程。
有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
如何正确理解二元一次方程组的概念
14楼:6度夕阳红
把两个含有相同未知数的一次方程联合在一起,那么这两个方程就组成了一个二元一次方程组。
二元一次方程定义:一个方程含有两个未知数,并且未知数的次数都是1的整式方程,叫二元一次方程。
二元一次方程组定义:含有两个相同未知数的两个一次方程所组成的方程组叫做二元一次方程组。
二元一次方程的解:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程[1] 的其中一个解。
二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。二元一次方程组的解必是它所含的二元一次方程的解。
二元一次方程组的解法和概念,二元一次方程组的概念?
1楼 匿名用户 含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 把两个二元一次方程联合在一起,那么这两个方程就组成了一个二元一次方程组。 解法可以看以下内容。http wenku baidu view b546acd328ea81c758f578cd html 2楼 匿名用户...
数学题二元一次方程组过程谢谢,数学题(二元一次方程组) 快
1楼 匿名用户 设大盒x盒,小盒y盒,则 3x 4y 108 2x 3y 76 解这个方程组得, x 20 y 12 数学题 二元一次方程组 过程 谢谢 2楼 匿名用户 设a型钢板为x,b型钢板为y 2x y 15 x 2y 18 得到x 4,y 7 所以可恰好用a型钢板4块,b型钢板7块。 3楼 ...
求解二元一次方程组格式,二元一次方程组,要有格式,求解
1楼 匿名用户 概念如果一个方程含有两个 未知数 并且所含未知项都为1次方 那么这个整式方程就叫做二元一次方程 有无穷个解 若加条件限定有有限个解 二元一次方程组 则一般有一个解 有时没有解 有时有无数个解 如一次函数中的平行 二元一次方程的一般形式 ax by c 0其中a b不为零 这就是二元一...