1楼:零子夕
因子分析与主成分分析的异同点:
都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量
公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大
主成分分析仅仅是变量变换,而因子分析需要构造因子模型。
主成分分析:原始变量的线性组合表示新的综合变量,即主成分;
因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。
2楼:匿名用户
主成分分析和因子分析都是信息浓缩的方法,即将多个分析项信息浓缩成几个概括性指标。
因子分析在主成分基础上,多出一项旋转功能,该旋转目的即在于命名,更容易解释因子的含义。如果研究关注于指标与分析项的对应关系上,或是希望将得到的指标进行命名,spssau建议使用因子分析。
主成分分析目的在于信息浓缩(但不太关注主成分与分析项对应关系),权重计算,以及综合得分计算。如希望进行排名比较,计算综合竞争力,可使用主成分分析。
spssau可直接保存因子得分及综合得分,不需要手动计算。
因子分析法和主成分分析法的区别与联系是什么?
3楼:零子夕
因子分析与主成分分析的异同点:
都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量
公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大
主成分分析仅仅是变量变换,而因子分析需要构造因子模型。
主成分分析:原始变量的线性组合表示新的综合变量,即主成分;
因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。
主成分分析法与因子分析法的区别? 5
4楼:小格调
一、性质不同
1、主成分分析法性质:通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量。
2、因子分析法性质:研究从变量群中提取共性因子的统计技术。
二、应用不同
1、主成分分析法应用:比如人口统计学、数量地理学、分子动力学模拟、数学建模、数理分析等学科中均有应用,是一种常用的多变量分析方法。
2、因子分析法应用:
(1)消费者习惯和态度研究(u&a)
(2) 品牌形象和特性研究
(3)服务质量调查
(4) 个性测试
(5)形象调查
(6) 市场划分识别
(7)顾客、产品和行为分类
5楼:匿名用户
主成分分析和因子分析都是信息浓缩的方法,即将多个分析项信息浓缩成几个概括性指标。
因子分析在主成分基础上,多出一项旋转功能,该旋转目的即在于命名,更容易解释因子的含义。如果研究关注于指标与分析项的对应关系上,或是希望将得到的指标进行命名,spssau建议使用因子分析。
主成分分析目的在于信息浓缩(但不太关注主成分与分析项对应关系),权重计算,以及综合得分计算。如希望进行排名比较,计算综合竞争力,可使用主成分分析。
spssau可直接使用这两种方法,支持自动保存因子得分及综合得分,不需要手动计算。
6楼:至善教育一对一
主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。
(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。
1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。
大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这种情况也可以使用因子得分做到。
所以这种区分不是绝对的。
在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)。
7楼:匿名用户
主成分分析和因子分析有十大区别:
1.原理不同
主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。
因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)
2.线性表示方向不同
因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。
3.假设条件不同
主成分分析:不需要有假设(assumptions),
因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specificfactor)之间也不相关,共同因子和特殊因子之间也不相关。
4.求解方法不同
求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵r已知),采用的方法只有主成分法。
(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)
注意事项:由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;一般当变量单位相同或者变量在同一数量等级的情况下,可以直接采用协方差阵进行计算;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;实际应用中应该尽可能的避免标准化,因为在标准化的过程中会抹杀一部分原本刻画变量之间离散程度差异的信息。此外,最理想的情况是主成分分析前的变量之间相关性高,且变量之间不存在多重共线性问题(会出现最小特征根接近0的情况);
求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。
5.主成分和因子的变化不同
主成分分析:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的独特的;
因子分析:因子不是固定的,可以旋转得到不同的因子。
6.因子数量与主成分的数量
主成分分析:主成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等),实际应用时会根据碎石图提取前几个主要的主成分。
因子分析:因子个数需要分析者指定(spss和sas根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同;
7.解释重点不同:
主成分分析:重点在于解释个变量的总方差,
因子分析:则把重点放在解释各变量之间的协方差。
8.算法上的不同:
主成分分析:协方差矩阵的对角元素是变量的方差;
因子分析:所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)
9.优点不同:
因子分析:对于因子分析,可以使用旋转技术,使得因子更好的得到解释,因此在解释主成分方面因子分析更占优势;其次因子分析不是对原有变量的取舍,而是根据原始变量的信息进行重新组合,找出影响变量的共同因子,化简数据;
主成分分析:
第一:如果仅仅想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析,不过一般情况下也可以使用因子分析;
第二:通过计算综合主成分函数得分,对客观经济现象进行科学评价;
第三:它在应用上侧重于信息贡献影响力综合评价。
第四:应用范围广,主成分分析不要求数据来自正态分布总体,其技术**是矩阵运算的技术以及矩阵对角化和矩阵的谱分解技术,因而凡是涉及多维度问题,都可以应用主成分降维;
10.应用场景不同:
主成分分析:
可以用于系统运营状态做出评估,一般是将多个指标综合成一个变量,即将多维问题降维至一维,这样才能方便排序评估;
此外还可以应用于经济效益、经济发展水平、经济发展竞争力、生活水平、生活质量的评价研究上;
主成分还可以用于和回归分析相结合,进行主成分回归分析,甚至可以利用主成分分析进行挑选变量,选择少数变量再进行进一步的研究。
一般情况下主成分用于探索性分析,很少单独使用,用主成分来分析数据,可以让我们对数据有一个大致的了解。
化学分析与仪器分析有什么异同,化学分析与仪器分析的区别和联系
1楼 房老师 化学分析与仪器分析,是两类分析法,有相同的 2楼 匿名用户 相同 都是分析化学的分支 不同 化学分析是以常规的四大滴定即 氧化还原滴定,络合滴定,酸碱滴定,沉淀滴定为基础的定量或定性的一个分析化学的分支。 仪器分析它是以物质的物理和物理化学性质为基础建立起来的一种分析方法。利用较特殊的...
化学分析与仪器分析的区别和联系,化学分析与仪器分析有什么异同
1楼 溢彤晨 化学分析是应用化学反应的原理,分析物质的分子组成和性质。仪器分析是利用物理反应的原理,分析物质组成和性质。 化学分析与仪器分析有什么异同 2楼 房老师 化学分析与仪器分析,是两类分析法,有相同的 3楼 匿名用户 相同 都是分析化学的分支 不同 化学分析是以常规的四大滴定即 氧化还原滴定...
边际分析与弹性分析的区别和联系,经济学中边际函数和弹性的区别与联系
1楼 税政小屋 区别 边际分析是单个产品 服务 的变动生产成本或利润,没多生产一个需要投入多少或赚多少。弹性是 降到什么程度仍可以保持盈利。 边际利润越大,弹性越大。边际成本越高,弹性越小。 经济学中边际函数和弹性的区别与联系 2楼 常揣想 边际函数是每增加一个单位相应增加的量,就是对总函数求导。弹...