实数的辐角是多少啊。我没有懂,求大神教。例子:3,-

2021-01-14 20:17:28 字数 5472 阅读 1793

1楼:我不是他舅

实数在实轴上,所以正实数辐角是0,负实数辐角是π,0没有辐角

学习高等数学的感想

2楼:匿名用户

学习高等数学的感想我认为学习高数应该从以下几个方面着手: 一.走出心理的障碍.

一些学生学高数学不懂,我认为是心理的障碍.这些同学当中极大数是高中时的数学没有学懂,因此一上来就失去了自信心,自认为自己不行学不懂高数.要我说这是畏惧的心理在作怪.

因此要克服学习高数的困难首先应该先克服自己的心理.具体应该怎样克服这种心理难关呢?我认为首先是要找回自己的自信心.

当我们拿到一道棘手的数学题,经过反复思考还是无从下手,此时千万不要谎.这时你不妨闭眼默吸一口气,并心中默念我行,我能行.这可能能激发你的思维,激活你的灵感.

剩下另一些学生他们学不好高数,那他们的心理又是怎样呢?我自认为,这些学生主要是心不专,也就是在做数学题是心中没有全身心的投入,而是转想他事,这样以来刚刚还有一些思维或灵感就会随着他们的思想跑门而消失,此时他们也许就有一些自负的心理,自认为自己不是学高数的料.这也是不自信的另一种表现,因此学好高数我认为第一点就是要有自信心和专心的思考.

这才是学习好高数的基础. 二.注重技巧和换位思考.

有时我们拿到一道题咋看都没法做,此时我们不妨换个角度来看这道题,或许我们可以从另一面找到突破口.下面我举个例子来说明我所倡导的换位思考.我们都知道在战争中,我们打仗是注重战略的.

现在我假设我们面前有一城堡,我们无论用什么现代**都无法将它摧毁,那怎么办?难道是将它围住困死里面的人吗?不行.

这样对我们的粮草同样是个消耗.也就是同样我们也是在困自己,再说时间就是金钱.我们没有时间去等待它的自行毁灭.

假如他们的后备有积攒我们难道要等一辈子?此时最重要的是我们想办法去破他,我们可以从地底下往上攻.我们也可以从心理上打赢他们,使他们军心散乱等等一些方法.

而我们现在碰上的数学难题就是这城堡,我们硬想是破不了的,我们不妨转个弯来考虑一下,也可以退一步想想或许这题没有我们想的那么困难,也可以先放下这道题去看看学过的公式,定理.从先哲的思想中去悟出这道题的突破口等等一些办法都可以用. 每当我们成功的破解一道题时,我想大家都有一种满足感.

我也有这种感觉,但是我们就仅仅满足这点吗?我们为什么不再想想这道题,或许还有其他的办法去解决.这样想了,这样做了,确实很费时间,但是这样的效果是不一样,它可以激活我们的思维,下次我们再遇上难题时我们就不至于被挡住了.

还有,有时我们做出一道题时发现它的步骤太过于繁琐,这时可能是我们想的太多了,也许这道题没那么复杂,我们走弯路了.此时从头再查就有可能有更好的,更简单的步骤出来.这就是学习高数中应该注重的技巧.

以上提到的注重技巧和换位思考对学好高数也至关重要. 三.注重实践中的应用.

其实,我们生活中处处是数学.这句话,我们的先哲们在几百年前就提出来了.我认为学习好高数的第三条就是要在实际生活中找数学.

这样可以加深我们对数学的认识和理解.说到认识想必大家都觉得可笑,我们整天都在学数学难道对它还不认识吗?要我说非也.

我们学习数学是我们学习了它的精髓,凡是没有运用到实际生活中那就算不得认识.不是有句话说的好,理论终归要回到实践嘛.要说运用到实践,大多数人就想到拿着笔和演草纸爬在生活中奋笔算写.

说到底运用到实际生活中其实没有这么难.我们大可不这样.我们只要能发现生活中的数学,并将它的数学原理搞清就成了.

这只需要动动脑子就搞定了.因此在实际生活中发现数学也是学好高数的另一种好方法. 激发学习高数的兴趣.

提高学习高数的兴趣,我想学不好高数的大多数人都会说自己学习高数没有兴趣,学习高数确实枯燥乏味,面对的除了x,y,z别无他物.它没有武侠**的侠骨柔情,没有爱情**的爱意绵绵,更没有科幻大片的惊险刺激.因此我也认为学习高数是很枯燥的事.

尤其是在凳子上一坐两个小时,听着教授的讲解,这更像是在解读天书.虽是这样说,但是学习高数的兴趣是自己激发的.就拿我来说吧,我曾经的数学学的并不好,倍受老师和同学的指责.

尤其是一件事打击了我才使我有了转变.那是高三最后的冲刺时段,一天数学老师在黑板写下了一题,限我们五分钟解答,但是我一点思路也没有,时间一分一秒地过了.我开始谎了,这样就把开始仅有的一点思路也整乱了.

要知道我们那里的学校对待学生是很严厉的.我转过头去看同桌的,想让他给我说说思路,结果他将头埋进题海中根本就没有理我,这是我才知道学不好数学是多么的没有面子.最后,我在那五分钟之内没有做完那题,结果可想而知.

事后我用了好几种方法做了那题,而我们的老师只用了一种方法.看了我的一个小经历,想必大家都有点儿想法了吧.因此我认为激发学习高数的兴趣有两种:

一种是找出做题时的满足感,另一种是在学习高数过程中相互攀比.这两种方法都很管用,希望大家都试试. 五.

做好课堂的认真听讲和课前后的预复习工作.这一条想必大家都很清楚,我这里也就不多说了,否则就有些老生长叹了.我只说一点,在数学课听教授的精华做笔记.

这样你能听到精华,也可以在当堂就抽出时间将课后作业完成. 六.多交流学习高数的心得.

这里所说的交流不仅仅限于同学,也可以和老师.至于交流学习高数的心得不一定也要找好学生.其实,学的稍后的同学有时他们的学习方式很好,知识没有重视和培养而已.

因此不要小看任何人.我说的倡导心得交流,并不是拿着笔记本去搞正式的听讲,而是在平时的谈话聊天中稍稍说一下,只要留心就可以不费吹灰之力将别人的心得搞定.这就是时时在意即文章,处处留心皆学问.

我以上提到的六条建议当中,只要做到一,四,五点就可以学好高数了,剩下的二,三,六平时稍加注意就可以成就你的梦想.其实学好高数并不是要花费多长时间.就拿我来说,我学习高数只是在课堂之上,除此之外我很少拿起高数的书.

最后,我衷心地祝大家在以后的学习当中步步有新展.如果你觉得对你有帮助,那就采纳我吧~~谢谢

3楼:开濮耿昭

高等数学包括数学分析,空间解析几何,线性代数初步等内容,首先,高中知识要学的牢固,包括函数,集合,平面解析几何,数列,三角函数等。其次,高等数学对思维的要求没有高中数学那么高,但是对概念公式等的掌握要很牢固,任何一条公式,见到它最好先不要看书本,自己观察一下式子,然后尝试着推导它(我学信息竞赛,我的老师就是这样,大学学线性代数时不记公式,考试时当场推出,数学系也想把他留作研究生,够厉害吧。。)这一步可以省略,但我个人建议最好推一下,这样对公式,以及它的内涵会更加了解,掌握得更牢固。

最后当然是勤做习题啦,最好买一本配套的练习和习题解答(高数的书推荐同济大学的那一套)。每天少上半小时网,做上十道题,期末等着同学们羡慕的目光吧!!高数中数学分析占了差不多百分之八十,如果有意往数学或物理,或其他对数学要求较高的学科发展,那么可以买一本数学分析看一下,国内教材推荐徐森林的三卷本数学分析,国外推荐“华章数学译丛”的《高等微积分》,《数学分析》,《数学分析原理》还有“图灵统计学丛书"的《微积分入门》(有两本,分别是单元微积分和多元微积分,小平邦彦写的)。

习题推荐

吉米多维其

的数学分析习题册(名字不太记得,吉米多维其是作者,这套练习册很有名,上网查就有)。这就是我学高数的全部经验,希望能帮到你,其实只要用心,谁都能学好数学。加油!!

高等数学都学什么?

4楼:demon陌

高等数学主要内容包括:极限、微积分、空间解析几何与向量代数、级数、常微分方程。

指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。

广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。

5楼:爱要一心

这是目录:

一、函数 极限 连续

二、一元函数微分学

三、一元函数积分学

四、微分方程初步

五、向量代数 空间解析几何

六、多元函数微分学

七、多元函数积分学(包括曲线积分、曲面积分)八、无穷级数

我刚刚上完大一,高数主要就是学微积分,因为大学里的其他学科很多都要用到微积分,所以要会算,那些微积分的公式都要很熟悉的。 先是学导数 ,微分就是在式子后面乘一个dx,而积分就是微分的逆运算。

6楼:匿名用户

一、函数 极限 连续

二、一元函数微分学

三、一元函数积分学

四、微分方程初步

五、向量代数 空间解析几何

六、多元函数微分学

七、多元函数积分学(包括曲线积分、曲面积分)八、无穷级数

它的资料和讲义,网上有很多。

7楼:匿名用户

主要就是定积分还有微积分方面的知识

8楼:天涯客

函数,极限,连续

一元函数微分

一元函数积分

多元函数微分

多元函数积分

常微分方程

学习高等数学有什么用处?

9楼:drar_迪丽热巴

学习高数的作用:

1、可以

培养思维能力

2、可以应用到其他学科的学习

3、专升本或考研都需要考数学

4、可以提高思维辩证能力,提高独立思考能力。

高等数学包括:

数学分析:主要包括微积分和级数理论。微积分是高等数学的基础,应用范围非常广,基本上涉及到函数的领域都需要微积分的知识。

级数中,傅立叶级数和傅立叶变换主要应用在信号分析领域,包括滤波、数据压缩、电力系统的监控等,电子产品的制造离不开它。

实变函数(实分析):数学分析的加强版之一。主要应用于经济学等注重数据分析的领域。

复变函数(复分析):数学分析加强版之二。应用很广的一门学科,在航空力学、流体力学、固体力学、信息工程、电气工程等领域都有广泛的应用,所以工科学生都要学这门课的。

10楼:匿名用户

1、可以培养思维能力

2、可以应用到其他学科的学习

3、专升本或考研都需要考数学

4、最直接的,期末考试要考,过了才能毕业,才能拿到毕业证

对于高等学校工科类专业的本科生而言,高等数学课程是一门非常重要的基础课,它内容丰富,理论严谨,应用广泛,影响深远。

不仅为学习后继课程和进一步扩大数学知识面奠定必要的基础,而且在培养学生抽象思维、逻辑推理能力,综合利用所学知识分析问题解决问题的能力,较强的自主学习的能力,创新意识和创新能力上都具有非常重要的作用。

扩展资料

高等数学包括:

数学分析:主要包括微积分和级数理论。微积分是高等数学的基础,应用范围非常广,基本上涉及到函数的领域都需要微积分的知识。

级数中,傅立叶级数和傅立叶变换主要应用在信号分析领域,包括滤波、数据压缩、电力系统的监控等,电子产品的制造离不开它。

实变函数(实分析):数学分析的加强版之一。主要应用于经济学等注重数据分析的领域。

复变函数(复分析):数学分析加强版之二。应用很广的一门学科,在航空力学、流体力学、固体力学、信息工程、电气工程等领域都有广泛的应用,所以工科学生都要学这门课的。