导数和微分的物理意义到底有什么区别

2020-11-21 17:59:00 字数 5519 阅读 4063

1楼:匿名用户

导数--求函数在某一个

点的切线斜率

微分--求函数在某一个点的增长率

做曲线运动的物体在某点的速度方向是沿该点的切线方向。至于切线怎么作,可分为两种情况下分析。对于一般曲线的切线,要求不是太高,一般只是作示意图即可,过这个点作一条直线与该曲线只有一个交点,这条直线就可看成切线。

微分和导数有什么区别

2楼:绿郁留场暑

导数和微分的区别

一个是比值、一个是增量。

1、导数是函数图像在某一点处的斜率,也就是纵坐标增量(δy)和横坐标增量(δx)在δx-->0时的比值。

2、微分是指函数图像在某一点处的切线在横坐标取得增量δx以后,纵坐标取得的增量,一般表示为dy。

扩展资料:

设函数y = f(x)在x的邻域内有定义,x及x + δx在此区间内。如果函数的增量δy = f(x + δx) - f(x)可表示为 δy = aδx + o(δx)(其中a是不随δx改变的常量,但a可以随x改变),而o(δx)是比δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的。

且aδx称作函数在点x相应于因变量增量δy的微分,记作dy,即dy = aδx。函数的微分是函数增量的主要部分,且是δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。

通常把自变量x的增量 δx称为自变量的微分,记作dx,即dx = δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。

因此,导数也叫做微商。

当自变量x改变为x+△x时,相应地函数值由f(x)改变为f(x+△x),如果存在一个与△x无关的常数a,使f(x+△x)-f(x)和a·△x之差是△x→0关于△x的高阶无穷小量,则称a·△x是f(x)在x的微分,记为dy,并称f(x)在x可微。一元微积分中,可微可导等价。

记a·△x=dy,则dy=f′(x)dx。例如:d(sinx)=cosxdx。

微分概念是在解决直与曲的矛盾中产生的,在微小局部可以用直线去近似替代曲线,它的直接应用就是函数的线性化。微分具有双重意义:它表示一个微小的量,因此就可以把线性函数的数值计算结果作为本来函数的数值近似值,这就是运用微分方法进行近似计算的基本思想。

推导设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量δy = f(x0 + δx) f(x0)可表示为δy = aδx + o(δx),其中a是不依赖于△x的常数, o(δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。

aδx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=aδx。微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。

得出: 当△x→0时,△y≈dy。

导数的记号为:(dy)/(dx)=f′(x),我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为dy=f′(x)dx。

[4]

几何意义

设δx是曲线y = f(x)上的点m的在横坐标上的增量,δy是曲线在点m对应δx在纵坐标上的增量,dy是曲 线在点m的切线对应δx在纵坐标上的增量。当|δx|很小时,|δy-dy|比|δx|要小得多(高阶无穷小),因此在点m附近,我们可以用切线段来近似代替曲线段。

3楼:王王王小六

1、定义不同

导数又名微商,当函数y=f(x)的自变量x在一点x0上产生一个增量δx时,函数输出值的增量δy与自变量增量δx的比值在δx趋于0时的极限a如果存在,a即为在x0处的导数。

微分在数学中的定义:由函数b=f(a),得到a、b两个数集,在a中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。

2、本质不同

导数是描述函数变化的快慢,微分是描述函数变化的程度。导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。而微分是一个函数表达式,用于自变量产生微小变化时计算因变量的近似值。

3、几何意义不同

导数的几何意义是切线的斜率,微分的几何意义是切线纵坐标的增量。因此微分可以用来做近似运算和误差估计。最简单的一元情况下,导数是一个确定的数值,几何意义是切线斜率,物理意义是瞬时速度。

4楼:匿名用户

(1)起源(定义)不同:导数起源是函数值随自变量增量的变化率,即△y/△x的极限。微分起源于微量分析,如△y可分解成a△x与o(△x)两部分之和,其线性主部称微分。

当△x很小时,△y的数值大小主要由微分a△x决定,而o(△x)对其大小的影响是很小的。

(2)几何意义不同:导数的值是该点处切线的斜率,微分的值是沿切线方向上纵坐标的增量,而△y则是沿曲线方向上纵坐标的增量。可参考任何一本教材的图形理解。

(3)联系:导数是微分之商(微商)y' =dy/dx, 微分dy=f'(x)dx,这里公式本身也体现了它们的区别。

(4)关系:对一元函数而言,可导必可微,可微必可导。

5楼:一向都好

导数是函数上切点的斜率

k=tan(y/x)

而这里的y是△y减去微小的部分

剩下的就是dy,

所以k=dy/dx

这里的dx就是△x,并没有像△y那样,还要减去一小部分如图(dy就是微分,斜率就是导数)

6楼:匿名用户

导数是△y/△x的近似

微分是△y的近似

这样好理解了吗

7楼:史朝东乐安

从几何意义上说,导数是

曲线某点切线的

斜率,而

微分则是某点切线

因变量y的微小增量。

从可导或可微方面说,可导即可微,可微即可导。

8楼:匿名用户

对一元函数而言,微分与导数可以看作是一致的,可微必可导,可导必可微,但对于多元函数来说,就不一致了,这时是可微必可导,可导不一定可微。

导数和微分到底是什么,有没有几何意义

9楼:愽

导数:一般指一元函数而言,对只有一个自变量x的函数y,则对函数y求导得到导数y',称之为函数y的导数。

偏导数:一般是针对多元函数而言,例如对有两个自变量x,y的函数z,则求z对y的导数,即为z对y的偏导数,书写为:z'y。

微分:存在一元微分和偏微分两种类型,与导数和偏导数的区别,只是书写的不同。例如,对一元函数而言,y的微分书写为:

dy=y'dx;对有两个自变量x,y的函数z,则求z对y的导数,z对y的偏微分,书写为:のz=z'yのy。

微分的几何意义与导数几何意义有何区别

10楼:不老岩

微分的几何意义是指,设δx表示曲线y=f(x)上的点m的在横坐标上的增量,δy表示曲线在点m对应δx在纵坐标上的增量,dy是曲线在点m的切线对应δx在纵坐标上的增量。当|δx|很小时,|δy-dy|是比|δy|的高阶无穷小。导数的几何意义是指,函数图像中某个点m处,当横坐标的变化趋向于0时的纵坐标变量与横坐标变量比值的极限,也叫做函数在该点处切线的斜率。

微分与导数有什么区别

11楼:钟全娄卯

对于一元函数y=f(x)而言,导数和微分没什么差别。导数的几何意义是曲线y=f(x)的瞬时变化率,即切线斜率。微分是指函数因变量的增量和自变量增量的比值△y=△f(x+△x)-f(x),这里可以把自变量x看成是关于自身的函数y=x,那么△x=△y,所以微分另一种说法叫微商,dy/dx是两个变量的比值。

一般来说,dy/dx=y'。

对于多元函数,如二元函数z=f(x,y)而言,导数变成了关于某个变量的偏导数。此时,微分符号dz/dx是个整体,不能拆开理解。而且,有个重要区别,可导不一定可微。

即可导是可微的必要非充分条件。但是,有定理,若偏导数连续则函数可微。具体看全微分与偏导数有关章节。

12楼:匿名用户

在一元函数的范围内,导数与微分是没有区别的,根据他们的定义我们就可以得到

△y=f'(x)△x+o(△x)

△y=dy+o(△x)

且 dy/dx=f'(x)

所以有人把导数也称作为微商,用来跟微分对应,这是没有问题的。

导数的可导、微分、连续性的联系

当f(x)在x0处可导等价于f(x)在x0处可微;

f(x)在x0处可微可以推出f(x)在x0处连续,但是f(x)在x0处连续不能推出f(x)在x0处可导(可微)

13楼:野哲张廖涵山

1定义不同:导数起源是函数值随自变量增量的变化率,即△y/△x的极限.微分起源于微量分析,如△y可分解成a△x与o(△x)两部分之和,其线性主部称微分.

当△x很小时,△y的数值大小主要由微分a△x决定,而o(△x)对其大小的影响是很小.

2几何意义不同:导数的值是该点处切线的斜率,微分的值是沿切线方向上纵坐标的增量,而△y则是沿曲线方向上纵坐标的增量.可参考任何一本教材的图形理解

3关系:对一元函数而言,可导必可微,可微必可导4联系:导数是微分之商(微商)y'

=dy/dx,微分dy=f'(x)dx,这里公式本身也体现了它们的区别.

导数和微分的区别是什么呢

14楼:沐麦冬宫凯

导数是变化率,即函数值的变化速度,微分则是变化量,即由于函数的自变量的增量产生函数值的增量,可以打个比方,一个物体在运动(速度可能不断地变化),运动的路程就是函数s(t),如果在它的运动路径上取一个观察点,则物体经过观察点时的速度v(t)就是函数s(t)的导数s'(t),以物体经过观察点的时刻t为起点,取一段时间间隔δt,则物体经过观察点时的速度v(t)与这一段时间间隔δt的乘积v(t)δt,也就是物体在这一段时间间隔δt内运动的路程v(t)δt就是函数s(t)在t时刻的微分ds,即ds

=v(t)δt,或ds

=v(t)dt。

15楼:税夏菡越渺

导数反映的是因变量的增量随自变量的增量变化问题,也就是函数的变化率问题,而微分则是“以直代曲”,将函数增量用自变量的增量某种线性关系描述了出来,而描述这种线性关系的系数正是函数的导数。

16楼:崔蒙洪槐

楼上的,问题是导数和微分的区别,你怎么说到微分和积分的区别了。

对于一元函数y=f(x)而言,导数和微分没什么差别。导数的几何意义是曲线y=f(x)的瞬时变化率,即切线斜率。微分是指函数因变量的增量和自变量增量的比值△y=△f(x+△x)-f(x),这里可以把自变量x看成是关于自身的函数y=x,那么△x=△y,所以微分另一种说法叫微商,dy/dx是两个变量的比值。

一般来说,dy/dx=y'。

对于多元函数,如二元函数z=f(x,y)而言,导数变成了关于某个变量的偏导数。此时,微分符号dz/dx是个整体,不能拆开理解。而且,有个重要区别,可导不一定可微。

即可导是可微的必要非充分条件。但是,有定理,若偏导数连续则函数可微。具体看全微分与偏导数有关章节。

theend。

钓鱼的拉饵和搓饵有什么区别,钓鱼用的搓饵和拉饵到底有什么区别

1楼 思佳好好的 1 从定义上来看,搓饵是将预先调好的鱼饵用手搓成球状,将鱼钩放在球状饵中继续搓,直到钩子完全埋入饵球之中。而拉饵是将钩子放在盘上,用饵团将鱼钩压住,然后把钩拉出,即可挂饵使用。 2 从饵料状态来看,搓饵雾化性较差,融散性较差,能够快速到底,防止小鱼截杀,而拉饵状态好 比重轻,容易招...

善良的女人和心机婊到底有什么区别

1楼 踏羽追梦 女人和婊,这还不清楚? 2楼 零乱on單調 大家都喜欢善良的女人 骨子里善良的女人与心机婊的善良有什么区别? 3楼 李勇初 善良有自然形,此类是家教深度的影响,及本性内涵在骨子里存在这品质,是任何环境下都无法变质,以及受过高等教育后视野开阔无意计算形成,这善良透着朴实的成份容易相处。...

愚公捞烫跟麻辣烫到底有什么区别

1楼 我微笑着淡忘扛 大锅煮改革成一人一锅,食材结构优化调整,加入海鲜,反正更健康 更安全了。从大的来看,属于消费升级后的新物种。 介绍自己喜欢吃的一种美食 麻辣烫 2楼 匿名用户 麻辣烫是起源于川渝地区的汉族特色小吃,和冒菜略微不同。 麻辣烫是起源于四川小吃,是川渝地区最有特色也最能代表 川味 的...