1楼:匿名用户
分子、分母同时除以2^(2/(x-1)),
则得到分子的极限是0,
分母的极限是1。
2楼:匿名用户
因为分母的无穷大为分子无穷大的2次方。2^(2/(x-1)=[2^(1/x-1)]^2
请教数学大神图中画圈处为什么小于等于1/2^2+1/3^2+......1/n^2
3楼:高智能机器人
有不懂可以继续追问 希望能够帮到你
4楼:葫芦**all金刚
因为ln(1+x)≤x,(x≥0)
要证x≥ln(1+x)(x≥0)
即证,x-ln(1+x)≥0
设f(x)=x-ln(1+x)
求导可得:f'(x)=1-1/(1+x)=x/(1+x)≥0在定义域[0,+∞)上恒成立,
所以f(x)单调增,得f(x)≥f(0)=0得证x-ln(1+x)≥0
得证x≥ln(1+x)(x≥0)
5楼:艾康生物
lnx-x=lnx-lne^x=ln(x/e^x)
x/e^x<1 ln(x/e^x)<0
lnx<lne^x<x
6楼:爱你确不可以
ln(1+x)0恒成立,推导如下
请教数学大神下图画圈中的问题,没有看懂为什么等于p(ac)-p(abc),请详细说明一下,谢谢! 50
7楼:匿名用户
首先a-b=a-ab,所以p=p
然后p=p
又abc包含于ac,所以p=p(ac)-p(abc)
这个数学极限的题为什么要让我画圈的等于0呢
8楼:匿名用户
因为由题目可知该极限存在且等于0,所以如果画圈部分在x趋于0的时候极限不等于0,那么原极限的分子在x趋于0的时候极限就不等于0,分子非零,分母为零,则极限为无穷,与题意矛盾,所以画圈部分必须为0
希望对你有帮助,望采纳
9楼:匿名用户
因为由题及其解法知,(1)式、(2)式的值都为0. 如果(1)式中第一个括号的极限1+b-a≠0,则(1)式的值将为∞,与为0矛盾;同理如果(2)式中两个括号的极限不都等于0,则(2)式的值不可能为0,与为0矛盾.
10楼:匿名用户
题意就是为零的。原题为等式,移项后变差为零。将移项后的等式取极限,极限必须且只能为零。
11楼:
其它的项分别为x的一次项和二次项,当x趋于0时,极限为0。要使整体极限为0,就要相当于常数项为0
数学分析:为什么右极限的时候要写成xo+1,左极限的时候又要用x0-0表示呢?它的缘由是什么?
12楼:匿名用户
这就是个写法,你可以理解为x0+0 后面的那个0是个无穷小,小到马上就是零的一个很小的正数,这样的话x0+0就表示比x0大一点点,就是x0的右邻域,右邻域里连续就是右连续
问一下,这个题目的左右极限为啥是0和1,怎么写出来的哇。求大神在纸上写一下步骤哇。
13楼:听不清啊
先求出它们在定义区间上的导数,再分别求左右极限:
x>=0: f'(x)=e^x 所以f'(0+)=1
x<0: f'(x)=-sinx 所以f'(0-)=0
14楼:匿名用户
你可以从0点左右两个函数本身可以延拓到整个实轴且导数连续,得到分别的导数 e^x 和 -sinx,得到左右导数分别为01
或者直接定义出发, lim_0+> (e^x - 1)/x = 1, lim_0-> (cos x - 1)/x = 0 这两个极限也都很常规。
15楼:微风迎春
分段函数的导数为
x>=0,f(x)=e^x
x<0,f(x)=-sinx
所以,f'(0-)=-sin0=0
f'(0+)=e^0=1
f'(0-)不等于f'_0+),
所以f(x)的导数的极限不存在。
高数,求间断点 为什么考虑间断点是1和-1的时候,不考虑它们的左右极限,而0的时候就要考虑,能解释
16楼:上海皮皮龟
这里的问题是要与分子的x约分,此时必须考虑x/|x|的正负号。如果没有约分问题,是不必考虑的。例如分母有因子|x+1|则也要考虑去绝对值后的正负问题
17楼:
因为要去绝对值,所以要判断去绝对值之后的正负情况
如果有类似|x-1|,|x+1|的话,在x=±1处也要分左右极限的
什么道理,无限接近于0怎么会左极限和有极限分别是1和-1呢,难道极限也取整数?
18楼:匿名用户
你所谓的"极限也取整数"是什麼意思?x/x只要x≠0,结果就是1,这是小学数学的问题吧?同样-x/x=-1不也是基本知识吗?
19楼:匿名用户
不是极限也取整数,
而是|x|/x这个函数在x=0的左边和右边的函数式不一样(即去掉绝对值符号后,两边不一样)
所以左右极限才出现不相同。
20楼:
第一类间断点
是左右极限都是存在的间断点,左右极限有一个存在的间断点就是第二类间断点,有一个是无穷大的间断点是无穷间断点。据此可知:
如果一个间断点,左极限是0.右极限是无穷,那么它是无穷间断点。第一类的间断点就是左右极限都是存在的间断点。
21楼:白洛蓝
有这种极限左极限和由极限不同的情况下在这一点是跳跃间断点,在这一点上只有左右极限,不能把它们合起来
22楼:_黯肀
这式子化简开就是1和-1 并不收敛
求高数解答:为什么lim e^[1/(x-1)] 的左右极限是0和+∞
23楼:匿名用户
上式 1/(x-1) → -∞, 故极限是 0,
下式 1/(x-1) → +∞, 故极限是 +∞。
请教数学大神图中画圈处为什幺小于等于1 2 2+
1楼 高智能机器人 有不懂可以继续追问 希望能够帮到你 2楼 葫芦 all金刚 因为ln 1 x x, x 0 要证x ln 1 x x 0 即证 x ln 1 x 0 设f x x ln 1 x 求导可得 f x 1 1 1 x x 1 x 0在定义域 0 上恒成立 所以f x 单调增 得f x ...