1楼:
整数就是可以用“个”来数的,如1、2、3……小数就是不能用“个”来数的
分数就是可以用“个”除以“个”的
负数就是缺少的,如你接了钱给被人,你的钱就变成负的了
2楼:匿名用户
,我们在数物体的时候,用来表示物体个数的数1、2、3、4、5、……,叫做 自然数,也叫做正整数。自然数的个数是无限的。 在自然数的前面加上“-”号,得到的数-1,-2,-3,-4,-5,……叫做负 整数。
负整数的个数也是无限的。 0既不是负整数也不是正整数。它可以用来表示一个物体也没有。
我们把正整数,0,负整数,统称为整数。2,要了解小数的意义,可从分数的意义著手,分数的意义可从子分割及合成活动来解释,当一个整体(指基准量)被等分后,在集聚其中一部份的量称为「分量」,而「分数」就是用来表示或纪录这个「分量」。例如:
2/5是指一个整数被分成五等分后,集聚其中二分的「分量」。当整体被分成十等分、百等分、千等分……等时,此时的分量,就使用另外一种纪录的方法-小数。例如1/10记成0.
1、2/100记成0.02、5/1000记成0.005……等。
其中的「.」称之为小数点,用以分隔整数部分与无法构成整数的小数部分。整数非0者称为带小数,若为0则称纯小数。
由此可知,小数的意义是分数意义的一环。3,而「分数」就是用来表示或纪录这个「分量」。例如:
2/5是指一个整数被分成五等分后,集聚其中二分的「分量」。4,百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数,百分数也叫做百分率或百分比。
5,负数是与正数意义相反或相对的数. 符号「+」读作正,「-」读作负. ☆注意:
一般正号可以省略不写,但负号不可以省略. 例如:+5读作5,(-5)读作负5
整数、小数、分数、百分数、负数、因数、倍数、合数的意义各是什么?
3楼:百度用户
1,我们在数物体的时候,用来表示物体个数的数1、2、3、4、5、……,叫做 自然数,也叫做正整数。自然数的个数是无限的。 在自然数的前面加上“-”号,得到的数-1,-2,-3,-4,-5,……叫做负 整数。
负整数的个数也是无限的。 0既不是负整数也不是正整数。它可以用来表示一个物体也没有。
我们把正整数,0,负整数,统称为整数。 2,要了解小数的意义,可从分数的意义著手,分数的意义可从子分割及合成活动来解释,当一个整体(指基准量)被等分后,在集聚其中一部份的量称为「分量」,而「分数」就是用来表示或纪录这个「分量」。例如:
2/5是指一个整数被分成五等分后,集聚其中二分的「分量」。当整体被分成十等分、百等分、千等分……等时,此时的分量,就使用另外一种纪录的方法-小数。例如1/10记成0.
1、2/100记成0.02、5/1000记成0.005……等。
其中的「.」称之为小数点,用以分隔整数部分与无法构成整数的小数部分。整数非0者称为带小数,若为0则称纯小数。
由此可知,小数的意义是分数意义的一环。 3,而「分数」就是用来表示或纪录这个「分量」。例如:
2/5是指一个整数被分成五等分后,集聚其中二分的「分量」。 4,百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数,百分数也叫做百分率或百分比。
5,负数是与正数意义相反或相对的数. 符号「+」读作正,「-」读作负. ☆注意:
一般正号可以省略不写,但负号不可以省略. 例如:+5读作5,(-5)读作负5
4楼:雪淑英鹿棋
质数,合数
质数又叫素数。质数的个数是无限的。
合数:一个数的约数除了1和它本身,还有其它的约数,这个数就叫做合数。2不是合数,1既不是质数又不是合数。
质因数即约数:一个合数的因数,而且这些因数都是质数倍数,因数
除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数是被除数的因数.
整数,小数和分数的意义是什么?
5楼:森海和你
1、整数就是像-3,-2,-1,0,1,2,3,10等这样的数。
整数中,能够被2整除的数,叫做偶数。不能被2整除的数则叫做奇数。即当n是整数时,偶数可表示为2n(n为整数);奇数则可表示为2n+1(或2n-1)。
2、小数,是实数的一种特殊的表现形式。所有分数都可以表示成小数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。
3、分数是一个整数a和一个正整数b的不等于整数的比。当在日常用语中说话时,分数描述了一定大小的部分,例如半数,八分之五,四分之三。
一、整数特征
1、若一个数的末位是单偶数,则这个数能被2整除。
2、若一个数的数字和能被3整除,则这个整数能被3整除。
3、若一个数的末尾两位数能被4整除,则这个数能被4整除。
4、若一个数的末位是0或5,则这个数能被5整除。
5、若一个数能被2和3整除,则这个数能被6整除。
二、小数特征
1、在小数部分的末尾添上或去掉任意个零,小数的大小不变。例如:0.4=0.400,0.060=0.06。
2、把小数点分别向右(或向左)移动n位,则小数的值将会扩大(或缩小)基底的n次方倍。
三、分数特征
1、一个分数不是有限小数,就是无限循环小数,像π等这样的无限不循环小数,是不可能用分数代替的。
2、当分子与分母同时乘或除以相同的数(0除外),分数值不会变化。因此,每一个分数都有无限个与其相等的分数。利用此性质,可进行约分与通分。
6楼:音羽·g·米萘
小数的意义
要了解小数的意义,可从分数的意义著手,分数的意义可从子分割及合成活动来解释,当一个整体(指基准量)被等分后,在集聚其中一部份的量称为「分量」,而「分数」就是用来表示或纪录这个「分量」。例如:2/5是指一个整数被分成五等分后,集聚其中二分的「分量」。
当整体被分成十等分、百等分、千等分……等时,此时的分量,就使用另外一种纪录的方法-小数。例如1/10记成0.1、2/100记成0.
02、5/1000记成0.005……等。其中的「.
」称之为小数点,用以分隔整数部分与无法构成整数的小数部分。整数非0者称为带小数,若为0则称纯小数。由此可知,小数的意义是分数意义的一环。
二、 小数的结构
小数记数系统是透过书写符号与物理数量的连结,来描述其规则。小数点往前算(左边)用以表示整数部分的量,第一位整数是纪录整数有几个一的量,该位置称为个位;小数点往前算的第二位整数纪录是纪录有几个十的量,该位置称为十位;……,以此类推。小数点往后算(右边)用以表示小数部分(不足1)的量,第一位小数是纪录有几个十分之一的分量,该位置称为十分位;小数点往后算的第二位小数是纪录有几个百分之一的分量,该位置称为百分位……,以此类推。
数的多单位记数系统中,「十位」、「个位」、「十分位」、「百分位」……等,被称为「位名」;其所指示的数值「十」、「一」、「0.1」、「0.01」……等,被称为「位值」。
「十」、「一」、「0.1」、「0.01」……等,可被用来当作被记数单位。
另外,「数」也可以由不同的记数单位「一」、「0.1」、「0.01」……等,来共同表示。
从上述的小数结构来看,让学生建构小数的十进结构与位值概念,对学生的小数概念发展而言,是非常重要的。
三、 小数学习的认知过程
(一) hiebert与wearne的「书写性数学符号能力发展理论」
1.连结过程
可利用学童所熟悉的指示物与数学符号产生连结。例如,可从生活中的物品(如钱、公制的测量等),或教具(如数学积木)来引出小数的符号来,让学童以后看到「1.8」时,在心中就会有「1杯水和0.
8杯水」。
2.发展过程
发展过程是指学童随著在指示物上的操弄,所发展出来的处理符号的程序。例如,学童透过积木的操弄,了解到单位若以"条”表示时会有小数的符号产生,进而发现到:不足一单位的量的表示法,除了分数以外,还有小数。
3.精致化过程
精致化是一种扩展语法程序到其他适当的情境的过程。例如,学童藉由积木了解到,以"条”为单位时,会有一位小数出现。而精致化的过程则是可以更进一步类化到两位小数的概念。
4.例行性过程
学童如果经常练习语法程序,则可以更有效率的运用数学符号来解决问题。
5.建造过程
学童把之前所学过的数学符号与规则,当作是新的数学符号系统的指示物,并把前述的四个认知过程重新再循环一次,以建立更抽象的数学符号系统。
(二)d’entremont的「小数学习的洋葱模式」
d’entremont认为小数学习的认知过程包括五种不同的层次,每一种层次是被外面的层次逐层所包围。概念性知识是小数知识的核心,学童为了要获得小数的概念性知识,必须一层一层的把上层的表皮给予剥掉。
1.具体物的层次
学童首先遇到的层次是具体物的层次。教师透过真实世界可见的物体引导学童进入小数的世界。例如,我们可用积木来介绍小数的位值概念,若我们把一条积木视为单位「1」,则一个积木视为「0.
1」。2.操作说明的层次
教师从原先使用具体物进行教学的方式,转换成以小数的符号表徵形式呈现的教学方式,其教学内容包括小数符号的介绍,以及如何应用小数符号。
3.程序的层次
学童不但可以单独的运用符号来进行小数的计算,也可以遵照小数计算的规则来进行运算。但并不会去反省自己刚刚到底做了哪些步骤。因此,即使学童会运算,并不代表该生就一定理解其背后的意义。
4.心智模式的层次
学童在心智模式的层次,不但不会盲目的遵循算则公式,而且还能清楚的知道他们解题时的理由。
5.抽象的层次
此时学童对於小数已有不错的直觉,不再需要可见的物体来帮助理解,他们对於「如何处理小数的问题」以及「为什麼」接能够给予统整起来。学童唯有达到这个阶段,才可获得小数知识的核心------小数概念的理解。
小数 分数 整数 的意义和读写法是什么?
7楼:谁是加菲猫
小数:小数由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数 小数是十进制分数的一种特殊表现形式。
分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。无理数为无限不循环小数。
http://baike.baidu.***/view/120346.html?wtp=tt#1
分数: 分数把单位"1"平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。分数也有“成绩”的意思,如考试分数。
http://baike.baidu.***/view/114541.htm
整数:整数(integer):像-2,-1,0,1,2这样的数称为整数。
(整数是表示物体个数的数,0表示有0个物体)整数是人类能够掌握的最基本的数学工具。整数的全体构成整数集,整数集合是一个数环。在整数系中,自然数为0和正整数的统称,称0为零,称-1、-2、-3、…、-n、… (n为整数)为负整数。
正整数、零与负整数构成整数系。
一个给定的整数n可以是负数(n∈z-),非负数(n∈z*),零(n=0)或正数(n∈z+).
http://baike.baidu.***/view/71484.htm
分数乘整数和整数乘分数的意义有什么区别
1楼 匿名用户 分数乘以整数 表示有多少个这样的分数 整数乘以分数 表示整数的几分之几 整数乘分数和分数乘整数意义一样吗 2楼 叫朕柾柾 整数乘以分数的意义是求 一个数的几分之几是多少 。 分数乘以整数的意义和整数乘整数的意义相同,是 求几个相同加数和的简便运算 ,即 这个分数的几倍是多少。 所以它...
小数分数整数的意义和读写法是什么
1楼 谁是加菲猫 小数 小数由整数部分 小数部分和小数点组成。当测量物体时往往会得到的不是整数的数 古人就发明了小数来补充整数 小数是十进制分数的一种特殊表现形式。 分母是10 100 1000 的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。无理数为无限不...
整数乘分数,小数乘分数,分数乘分数表示的意义相同吗
1楼 匿名用户 相同,都是表示 整数 小数 分数 这个数的几分之几是多少。 整数乘分数和分数乘整数意义一样吗 2楼 叫朕柾柾 整数乘以分数的意义是求 一个数的几分之几是多少 。 分数乘以整数的意义和整数乘整数的意义相同,是 求几个相同加数和的简便运算 ,即 这个分数的几倍是多少。 所以它们的意义是不...