1楼:我的行云笔记
把y=e^x展成幂级数,由e^x的幂级数的一致收敛性,只需代x=-1/(z-1)即可。
幂级数的一致收敛,内
看定义是对应于奇点来容划分区域的,一般的,要把一个函数展成洛朗级数,是在其解析区域展成洛朗级数, 比如把1/(1-z)在0点展成洛朗级数,由于z=1是奇点,那么就要把平面进行分割;
在|z|<1内,1/(1-z)= σ z^n 。 在|z|>1内,有1/|z|<1,那么1/(1-z)=1-1/[1-(1/z)]1- σ(1/ z)^n , 那如果是在其奇点处那么洛朗级数就为-1/(z-1) 无论在那个区域内,都要保证期级数是收敛的,从而可得到洛朗展式。
2楼:的大吓是我
洛朗级数式需要在某一点处的,另外函数符号有歧义,应该指的是e^(1/(1-z))。由于点未指明,此处仅就在z=0以及z=1处(利用奇点的分类即可)。回答如下:
自相关函数和互相关函数的主要差异是什么?? [理工学科]
3楼:匿名用户
呵呵,不知道你看的是哪本书,用相关函数来做什么。这个问题很宽泛啊。。互相关函数体现两个信号的接近程度;自相关函数一个信号在不同时刻的相似程度。
比如说白噪声的任意时刻都互不相关,所以它的自相关函数是冲击信号。计算公式书上有。计算过程和卷积相似,很好玩o(∩_∩)o~自相关函数的傅立叶变换是功率谱密度或者能谱密度。
可以用r(0)来证明帕赛瓦尔方程。大概就是这样了,还有**不明白吗? 你的问题确实很宽泛。。。
4楼:匿名用户
不好意思,刚看到,自相关函数和互相关函数的主要差异是什么?? 信号处理分析里面的内容。
5楼:匿名用户
好像复变上有这方面的内容小弟也看了一小下有点晕
考研,高等数学,理工学科 如图二元函数求极限这样**错了,注这个极限不存在
6楼:匿名用户
分母中x+y=ρ,所以ρ的3/2次方等于ρ的6/2次方=ρ
你似乎把x+y=ρ啦?
请问事业单位考试里理工类专业题是指怎么类型的题,我应该看什么书 100
7楼:匿名用户
您好,中公bai
教育为du您服务。
公共基础知识是zhi事业单位dao考试的一般考查内容,部分版专业权
岗位还会考察专业知识,你的专业知识考察参考资料可用你所学专业的教材书作为参考资料。具体的考察内容可以咨询招考单位,相关招考信息可以到浙江中公事业单位考试网考试题库查看。
如有疑问,欢迎向中公教育企业知道提问。
8楼:帕拉丁的永恒
初等数学来,像集合、函数、不等式源和不等式组、数bai列、三角du函数、三角函
数市的变化zhi、三角dao函数图像和性质、解三角形、直线、圆锥曲线、排列组合、概率与统计初步
高等数学,就像函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分这些.
还有就是计算机基础知识......
计算机文化概述、计算机的基本组成、windowsxp操作系统、worde2003字处理软件、excel2003电子**处理软件、计算机网络基础知识与inter***的应用、计算机信息安全
9楼:匿名用户
理科文科都一样 有申论 公共基础知识 还有行测 都是这3本书 可以买来看看
10楼:匿名用户
我觉得应该不是楼上说的
11楼:匿名用户
兄弟 你参加理工类考试 题目都是什么啊 能分享一下吗
大学里面高等数学都学的什么啊
12楼:蔷祀
在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。
理工科的不同专业,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:
线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。
微积分的基本概念和内容包括微分学和积分学。
微分学的主要内容包括:极限理论、导数、微分等。
积分学的主要内容包括:定积分、不定积分等。
从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。
数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的收集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或**,为采取某种决策和行动提供依据或建议。
概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。
例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。
随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题。
因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
扩展资料:
19世纪以前确立的几何、代数、分析三大数学分支中,前两个都原是初等数学的分支,其后又发展了属于高等数学的部分,而只有分析从一开始就属于高等数学。分析的基础——微积分被认为是“变量的数学”的开始,因此,研究变量是高等数学的特征之一。
原始的变量概念是物质世界变化的诸量的直接抽象,现代数学中变量的概念包含了更高层次的抽象。如数学分析中研究的限于实变量,而其他数学分支所研究的还有取复数值的复变量和向量、张量形式的。
以及各种几何量、代数量,还有取值具有偶然性的随机变量、模糊变量和变化的(概率)空间——范畴和随机过程。描述变量间依赖关系的概念由函数发展到泛函、变换以至于函子。
与初等数学一样,高等数学也研究空间形式,只不过它具有更高层次的抽象性,并反映变化的特征,或者说是在变化中研究它。例如,曲线、曲面的概念已发展成一般的流形。
按照埃尔朗根纲领,几何是关于图形在某种变换群下不变性质的理论,这也就是说,几何是将各种空间形式置于变换之下来来研究的。
无穷进入数学,这是高等数学的又一特征。现实世界的各种事物都以有限的形式出现,无穷是对他们的共同本质的一种概括。所以,无穷进入数学是数学高度理论化、抽象化的反映。
数学中的无穷以潜无穷和实无穷两种形式出现。
在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。
数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。
另外一些形式上更为抽象的极限过程,在别的数学学科中也都起着基本的作用。还有许多学科的研究对象本身就是无穷多的个体,也就说是无穷集合,例如群、环、域之类及各种抽象空间。这是数学中的实无穷。
能够处理这类无穷集合,是数学水平与能力提高的表现。
为了处理这类无穷集合,数学中引进了各种结构,如代数结构、序结构和拓扑结构。另外还有一种度量结构,如抽象空间中的范数、距离和测度等,它使得个体之间的关系定量化、数字化,成为数学的定性描述和定量计算两方面的桥梁。上述结构使得这些无穷集合具有丰富的内涵,能够彼此区分,并由此形成了众多的数学学科。
数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。
在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。
参考资料:
13楼:于昌斌的
主要学的是函数极限、微积分、级数、向量、不定积分。下面是目录:
一、上册:
1函数与极限。
2导数与微分。
3导数的应用,。
4不定积分。
5定积分。
6微分方程。
7多元函数微分法。
8二重积分
二、下册:
1行列式。
2矩阵。
3向量。
4线性方程组。
5相似矩阵及二次型。
6概率。
7随机变量及分布。
8随机变量的数字特征。
9大数定理及中心极限定理。
高等数学是大学必修课之一,分上下册,一般在大一每个学期学一册。此书为田玉芳编著,2014年出版,本书可作为高等学校理工类各专业,尤其是工科电子信息类各专业本科生的高等数学教材或教学参考书,也可供学生自学使用。
14楼:十里峻廊
那真巧,哥们儿,我也是机电一体化大专学生,正在学高数,常规流程是同济七版的高数教材,不过可能会看不懂,慢慢学,第一章对不等式的理解极高,不然搞不懂极限概念,可以大概看看第一章,在学第二章,如果你觉得书上的证明很难理解,可以先跳过,不过前提是你想从事工科行业,如果你想进一步学懂数学证明的话建议学中科大的数学分析,两种书**有卖的,希望对你有用。
15楼:
一般大学的高等数学主要内容就是微积分这门课程。这里给出当前卖得最火的《高等数学》同济大学第六版的目录为例:
第一章 函数与极限
第一节 映射与函数
第二节 数列的极限
第三节 函数的极限
第四节 无穷小与无穷大
第五节 极限运算法则
第六节 极限存在准则 两个重要极限
第七节 无穷小的比较
第八节 函数的连续性与间断点
第九节 连续函数的运算与初等函数的连续性
第十节 闭区间上连续函数的性质
总习题一
第二章 导数与微分
第一节 导数概念
第二节 函数的求导法则
第三节 高阶导数
第四节 隐函数及由参数方程所确定的函数的导数 相关变化率第五节 函数的微分
总习题二
第三章 微分中值定理与导数的应用
.第一节 微分中值定理
第二节 洛必达法则
第三节 泰勒公式
第四节 函数的单调性与曲线的凹凸性
第五节 函数的极值与最大值最小值
第六节 函数图形的描绘
第七节 曲率
第八节 方程的近似解
总习题三
第四章 不定积分
第一节 不定积分的概念与性质
第二节 换元积分法
第三节 分部积分法
第四节 有理函数的积分
第五节 积分表的使用
总习题四
第五章 定积分
第一节 定积分的概念与性质
第二节 微积分基本公式
第三节 定积分的换元法和分部积分法
第四节 反常积分
第五节 反常积分的审敛法 函数
总习题五
第六章 定积分的应用
第一节 定积分的元素法
第二节 定积分在几何学上的应用
第三节 定积分在物理学上的应用
总习题六
第七章 微分方程
第一节 微分方程的基本概念
第二节 可分离变量的微分方程
第三节 齐次方程
第四节 一阶线性微分方程
第五节 可降阶的高阶微分方程
第六节 高阶线性微分方程
第七节 常系数齐次线性微分方程
第八节 常系数非齐次线性微分方程
第九节 欧拉方程
第十节 常系数线性微分方程组解法举例
z(1-x-y)开根号表示的几何意义是什么
1楼 匿名用户 以原点为球心,以1为半径的半个球体 2楼 匿名用户 变形为 x y z 1,z 0 答案,半球 关于数学x y z 的几何意义 3楼 匿名用户 如果z为常量 x y z 0 0 为圆心,根号z 为半径的圆x y 2y z 0 1 为圆心,根号 z 1 为半径的圆 2x y 1 z 根...