1楼:神灵侮仕
c表示组抄合方法,比如有3个人甲乙袭丙,抽出2个人去参加活动的方法有c(3,2)=3种,分别是甲乙、甲丙、乙丙,这个不具有顺序性,只有组合的方法。
p(我当时学的时候是a)表示排列方法,表示一些物体按顺序排列起来,总共的方法是多少。
计算是固定的套路,熟能生巧,多计算几个就熟练了。
举个例子,c(5,2)=(5*4)/(2*1)=10,c(7,3)=7*6*5 / 3*2*1=35
p(5,3)=5*4*3=60,p(6,2)=6*5=30希望对你有帮助。
2楼:匿名用户
c是组合,c(m,n)=n*(n-1)*(n-2)*……*(n-m+1)/m!
p是排列,p(m,n)=n*(n-1)*(n-2)*……*(n-m+1)
注:(m,n)表示m为上标,n为下标
3楼:鄢绿竺元英
c(n,m)=n*(n-1)*(n-2)*……*(n-m+1)/(1*2*3*……*m)
从n个不同元素中选出m个不同元素的组合数
概率里c和p这两个符号的差别 有什么运算法则的
4楼:千娇百媚
c(n,m)=n*(n-1)*(n-2)*……*(n-m+1)/(1*2*3*……*m)
从n个不同元素中选出m个不同元素的组合数
5楼:濯名潜阳辉
c表示组合方法,比如有3个人甲乙丙,抽出2个人去参加活动的方法有c(3,2)=3种,分别是甲乙、甲丙、乙丙,这个不具有顺序性,只有组合的方法。
p(我当时学的时候是a)表示排列方法,表示一些物体按顺序排列起来,总共的方法是多少。
计算是固定的套路,熟能生巧,多计算几个就熟练了。
举个例子,c(5,2)=(5*4)/(2*1)=10,c(7,3)=7*6*5
/3*2*1=35
p(5,3)=5*4*3=60,p(6,2)=6*5=30希望对你有帮助。
p这两个符号的差别有什么运算法则的
6楼:赌资
c(n,m)=n*(n-1)*(n-2)*……*(n-m+1)/(1*2*3*……*m)
从n个不同元素中选出m个不同元素的组合数
高中数学,概率问题 c 和 a这两个符号代表什么,怎么运算
7楼:匿名用户
公式p是指排列,从n个元素
取r个进行排列(即排序)。 (p是旧用法,现在教材上多用a,arrangement)
公式c是指组合,从n个元素取r个,不进行排列(即不排序)。 am,n=m*(m-1)*(m-2)*……*(m-n+1)cm,n=am,n/n!=m*(m-1)*(m-2)*……*(m-n+1)/[n*(n-1)*……3*2*1]欢迎采纳,记得评价哦!
8楼:匿名用户
这是概念化的数字符号,代表某一事件。至于运算要看两者的逻辑关系所定,有互补、互斥、包含于等
9楼:匿名用户
a代表排列c代表组合、两者区别在于a必须排列、c不排列。
10楼:匿名用户
a必须排列、c不排列
a这个符号在概率中的含义,和p有什么区别 35
11楼:千娇百媚
符号 a(n,m) ----------即 字母a右下角n 右上角m
表示n取m的排列数, ----------从n个不同元素中取出m(m≤n)个元素的所有排列的个数
a和p没有区别
过去曾用p表示排列数, p是permut首字母,现在多用a表示排列数, a是arrangement首字母就像 过去曾用tg表示正切, 现在多用tan表示正切一样
12楼:匿名用户
概率的频率定义 随着
人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。r.
von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。a.
h.柯尔莫哥洛夫于1933年给出了概率的公理化定义。
概率的严格定义
设e是随机试验,ω是它的样本空间。对于e的每一事件a赋于一个实数,记为p(a),称为事件a的概率。这里p(·)是一个集合函数,p(·)要满足下列条件:
(1)非负性:对于每一个事件a,有p(a)≥0;
(2)规范性:对于必然事件s,有p(s)=1;
(3)可列可加性:设a1,a2……是两两互不相容的事件,即对于i≠j,ai∩aj=φ,(i,j=1,2……),则有p(a1∪a2∪……)=p(a1)+p(a2)+……
随机事件的发生与否是带有偶然性的,但是随机事件发生的可能性还是有大小之别的,是可以度量的。实际上在生活、生产和经济活动中,人们常关心一个随机事件发生的可能性大小。
例如:(1)抛一枚均匀的硬币,出现正面与方面的可能性各为1/2。
(2)购买彩票的中奖机会有多少呢?
上述正面出现的机会,以及彩票中奖的机会或者命中率都是用来度量随机事件发生可能性大小。一个随机事件a发生可能性的大小称为这个事件的概率,并用p(a)表示。
概率是一个介于0到1之间的数。概率越大,事件发生可能性就越大;概率越小,事件发生的可能性也就就越小。特别,不可能事件的概率为0,必然事件的概率为1,即:
p(φ)=0,p(ω)=1
概率的古典定义
如果一个试验满足两条:
(1)试验只有有限个基本结果
(2)试验的每个基本结果出现的可能性是一样的。
这样的试验,成为古典试验。
对于古典试验中的事件a,它的概率定义为:
p(a)=m/n,n表示该试验中所有可能出现的基本结果的总数目。m表示事件a包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。
概率的统计定义
在一定条件下,重复做n次试验,na为n次试验中事件a发生的次数,如果随着n逐渐增大,频率na/n逐渐稳定在某一数值p附近,则数值p称为事件a在该条件下发生的概率,记做p(a)=p。这个定义成为概率的统计定义。
在历史上,第一个对“当试验次数n逐渐增大,频率na稳定在其概率p上”这一论断给以严格的意义和数学证明的是早期概率论史上最重要的学者雅各布·伯努利(jacob bernoulli,公元1654年~1705年)。
从概率的统计定义可以看到,数值p就是在该条件下刻画事件a发生可能性大小的一个数量指标。
由于频率na/n总是介于0和1之间,从概率的统计定义可知,对任意事件a,皆有0≤p(a)≤1,p(ω)=1,p(φ)=0。
ω、φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。
历史第一个系统地推算概率的人是16世纪的卡尔达诺。记载在他的著作《liber de ludo aleae》中。书中关于概率的内容是由gould从拉丁文翻译出来的。
cardano的数学著作中有很多给赌徒的建议。这些建议都写成短文。例如:
《谁,在什么时候,应该赌博?》、《为什么亚里斯多德谴责赌博?》、《那些教别人赌博的人是否也擅长赌博呢?
》等。然而,首次提出系统研究概率的是在帕斯卡和费马来往的一系列信件中。这些通信最初是由帕斯卡提出的,他想找费马请教几个关于由chevvalier de mere提出的问题。chevvalier de mere是一知名作家,路易十四宫廷的显要,也是一名狂热的赌徒。
问题主要是两个:掷骰子问题和比赛奖金应分配问题。
两大类别古典概率相关
古典概率讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。若事件a包含m个基本事件,则定义事件a发生的概率为p(a)=m/n,也就是事件a发生的概率等于事件a所包含的基本事件个数除以基本空间的基本事件的总个数,这是p.-s.
拉普拉斯的古典概率定义,或称之为概率的古典定义。历史上古典概率是由研究诸如掷骰子一类赌博游戏中的问题引起的。计算古典概率,可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。
几何概率相关
几何概率若随机试验中的基本事件有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概率,于是产生了几何概率。几何概率的基本思想是把事件与几何区域对应,利用几何区域的度量来计算事件发生的概率,布丰投针问题是应用几何概率的一个典型例子。
在概率论发展的早期,人们就注意到古典概率仅考虑试验结果只有有限个的情况是不够的,还必须考虑试验结果是无限个的情况。为此可把无限个试验结果用欧式空间的某一区域s表示,其试验结果具有所谓“均匀分布”的性质,关于“均匀分布”的精确定义类似于古典概率中“等可能”只一概念。假设区域s以及其中任何可能出现的小区域a都是可以度量的,其度量的大小分别用μ(s)和μ(a)表示。
如一维空间的长度,二维空间的面积,三维空间的体积等。并且假定这种度量具有如长度一样的各种性质,如度量的非负性、可加性等。
◆几何概率的严格定义
设某一事件a(也是s中的某一区域),s包含a,它的量度大小为μ(a),若以p(a)表示事件a发生的概率,考虑到“均匀分布”性,事件a发生的概率取为:p(a)=μ(a)/μ(s),这样计算的概率称为几何概率。
◆若φ是不可能事件,即φ为ω中的空的区域,其量度大小为0,故其概率p(φ)=0。
独立试验序列
假如一串试验具备下列三条:
(1)每一次试验只有两个结果,一个记为“成功”,一个记为“失败”,p=p,p=1-p=q
(2)成功的概率p在每次试验中保持不变
(3)试验与试验之间是相互独立的。
则这一串试验称为独立试验序列,也称为bernoulli概型。
必然事件与不可能事件
在一个特定的随机试验中,称每一可能出现的结果为一个基本事件,全体基本事件的集合称为基本空间。随机事件(简称事件)是由某些基本事件组成的,例如,在连续掷两次骰子的随机试验中,用z,y分别表示第一次和第二次出现的点数,z和y可以取值1、2、3、4、5、6,每一点(z,y)表示一个基本事件,因而基本空间包含36个元素。“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用集合表示,“点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用集合表示。
如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为不可能事件。在试验中此事件不可能发生。如果把“点数之和小于40”看成一事件,它包含所有基本事件,在试验中此事件一定发生,所以称为必然事件。
若a是一事件,则“事件a不发生”也是一个事件,称为事件a的对立事件。实际生活中需要对各种各样的事件及其相互关系、基本空间中元素所组成的各种子集及其相互关系等进行研究
举个例子:小明要在4个抽屉中放入5个球,其中有一个抽屉会有2个球,这就是必然事件
再举个例子:小明要在5个抽屉中放入3个球,如果说其中每个抽屉都有球,那么,这就是不可能事件
【随机事件,基本事件,等可能事件,互斥事件,对立事件】 在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
一次实验连同其中可能出现的每一个结果称为一个基本事件。
通常一次实验中的某一事件由基本事件组成。如果一次实验中可能出现的结果有n个,即此实验由n个基本事件组成,而且所有结果出现的可能性都相等,那么这种事件就叫做等可能事件。
不可能同时发生的两个事件叫做互斥事件。
必有一个发生的互斥事件叫做对立事件。
即p(必然事件)=1
p(可能事件)=(0-1)(可以用分数)
p(不可能事件)=0
性质性质1.p(φ)=0.
性质2(有限可加性).当n个事件a1,…,an两两互不相容时: p(a1∪。。.∪an)=p(a1)+...+p(an).
性质3.对于任意一个事件a:p(a)=1-p(非a).
性质4.当事件a,b满足a包含于b时:p(b-a)=p(b)-p(a),p(a)≤p(b).
性质5.对于任意一个事件a,p(a)≤1.
性质6.对任意两个事件a和b,p(b-a)=p(b)-p(ab).
性质7(加法公式).对任意两个事件a和b,p(a∪b)=p(a)+p(b)-p(a∩b).
(注:a后的数字1,2,...,n都表示下标.)
频率与概率
对事件发生可能性大小的量化引入“概率”.
“统计规律性”
独立重复试验总次数n,事件a发生的频数μ,
事件a发生的频率fn(a)=μ/n,a的频率fn(a)有没有稳定值?
如前人做过的掷硬币的试验(p.44下面表)
如果有就称频率μn的稳定值p为事件a发生的概率记作p(a)=p[概率的统计定义]
p(a)是客观的,而fn(a)是依赖经验的。
统计中有时也用n很大的时候的fn(a)值当概率的近似值。
三个基本属性
1.[非负性]:任何事件a,p(a)≥0
2.[完备性]:p(ω)=1
3.[加法法则]如事件a与b不相容,即如果ab=φ,则p(a+b)=p(a)+p(b)
加法法则
如事件a与b不相容,a+b发生的时候,a与b两者之中必定而且只能发生其中之一。独立重复地做n次实验,如记事件a发生的频数为μa、频率为fn(a) ,记事件b发生的频数为μb 、频率为fn(b) ,事件a+b发生的频数为μa+b 、频率为fn(a+b) ,易知:μa+b =μa +μb,∴fn(a+b) = fn(a) + fn(b) ,它们的稳定值也应有:
p(a+b)=p(a)+p(b)[加法法则]如事件a与b不相容,即如果ab=φ,则 p(a+b)=p(a)+p(b)即:两个互斥事件的和的概率等于它们的概率之和。请想一下:
如a与b不是不相容,即相容的时候呢?进一步的研究得: p(a+b)=p(a)+p(b)-p(ab)这被人称为:
“多退少补”!
概率这两个符号的区别,css中,“.”和“#”这两个符号有什么区别?
1楼 匿名用户 概率中p 或a 表示排列p n m m m 1 m 2 m n 1 c表示组合c n m p n m p n n c和p的区别在于是否含有顺序p带有顺序 c不带有顺序 css中, 和 这两个符号有什么区别? 2楼 朗朗跄跄 css中, 区别 1 是使用class引用的,多个控件可以同...
c语言中的和两个运算符有什么区别
1楼 匿名用户 在c语言中,运算符 和运算符 所表示的意义不同。 是赋值运算符,它的含义是将右侧表达式的值赋给左侧的变量。 是关系运算符,如果两侧表达式的值相等,则其值为1,否则为0。 2楼 匿名用户 一个等号是赋值运算符,用于把等号右边的结果赋值给左边的变量 两个等号是判等运算符,用于判断等号左右...
两个竖杠是什么数学符号就是这个有什么运算规则
1楼 欣琳之秀 范数http baike baidu view 637132 htm 2楼 匿名用户 用得最多的两根竖杆是数学中的 绝对值 。如 4 4 4 4 4 其意义是 表示数轴上的点到原点的实际距离 永远不会是负数 。 三大定规 正数的绝对值是它自己。 零的绝对值为零, 最难应用 负数的绝对...