1楼:匿名用户
在问问题是至少要把自己的问题描述清楚。。。不然估计没有人会给你解答。
这里提几点建议(仅对于数学问题):
如果问题是引用的纸质文献,尽量拍照后上传,因为不是所有的人都有你引用的文献
如果问的问题很难,建议先描述一下你自己的思路以及困难
求教,应力张量不变量和应力偏张量不变量的物理意义
2楼:匿名用户
第一不变量是三个主应力的代数和
第二不变量是三个主应力两两相乘的和
第三不变量是三个主应力的代数积.
以上是根据代数表达式写的,不知道是不是你要的物理意义.
求助张量如何表示第二应力不变量
3楼:匿名用户
应力不变其实是根据cauchy公式推过来的。
你把1.2.3分别看成x.y.z比较好理解。其中11.22.33就是正应力而12.13.23都的切应力。
貌似楼主的 公式打错了,式中第一项是s11s22吧。
可以参考陈明祥编著的《弹塑性力学》1.7主应力、应力张量不变量。
张量分析的一个问题
4楼:哈哈哈哈
没有错,你再计算一下。
5楼:匿名用户
^应该是矩阵元素 gi(x^j)=1, i=j, (i,j=1,2,3)
gi(x^j)=0, i≠j, (i,j=1,2,3)
即矩阵元素 gi(x^j) = δij ,(i,j=1,2,3) (不是点积(dot product))
6楼:援手
对于第三个式子,两个向量的点乘结果是一个数没错,但是这里的i和j都是分别取1,2,3的,i和j每取定一对固定的数,就相当于给定了两个向量,于是这两个向量就可以求内积,得到一个实数,但是注意这样的向量有3*3=9对,每一对都取内积,于是得到9个实数,故其排成3*3的矩阵,因此第三个式子的结果是3*3矩阵,而不是一个数。
一点的应力为什么有九个分量?应力张量的各分量应该怎么理解? 100
7楼:萧桀
张量:一个物理量如果必须用n阶方阵描述,且满足某几种特定的运算规则(也就是说,这方阵通过这几种运算后得到的结果是规则指出的),则这个方阵描述的物理量称为张量。
举例:矢量就是一个2阶张量,它可以用2阶方阵描述,且满足特定的运算规则(2阶情况下简化为平行四边形定则)。 此外如函数和其梯度(场)、向量场、外微分形势、黎曼度量等都是张量
注释:1、张量在物理上用的多,但是是一个数学的概念,是微分几何研究的一个方向
2、概念的核心:张量的分量在坐标变换下满足适当的变换律。
你把问题放错分类了!
不是给你说了吗!你把你的问题放错了地方!物理的问题你放社会里边,只为积分的菜鸟可多的去了!
说实话,我对张量不是太了解。你处理完这道题,重新问吧!把它放到物理一块里,那里有专门的物理高手等你呢,这一百分,别丢可以吗!
偏应变不变量和偏应力不变量关系
8楼:江莱好先生
第一不变量是三个主应力的代数和
第二不变量是三个主应力两两相乘的和
第三不变量是三个主应力的代数积.
以上是根据代数表达式写的,不知道是不是你要的物理意义.
9楼:匿名用户
可以认为其对应成比例关系
什么是应力球张量
10楼:月似当时
应力球张量是一种平均的等向应力状态(三向等拉或等压),对各向同性材料,它引起微元体积膨胀或收缩。应力偏量表示实际应力状态对其平均应力状态的偏离,它引起微元形状的改变。
强度准则是用来判断材料在复杂受力状态下何时破坏的理论,是工程上用来对结构强度进行评价的破坏准则。
通常定义一个一般性的强度准则的构造理念如下:
(1)强度准则中各项参数具有一定的物理意义;
(2)强度准则具有简单的表达式,各参数项的系数最好由简单试验来确定,强度包线在简单受力状态下同试验结果完全符合;
(3)各项参数的系数在多轴受力状态下适当拟合和近似简化。
扩展资料
偏应力张量第二不变量j2的大小可用来判断物体所处的弹塑性状态;偏应力张量第三不变量j3可用来定性的判断物体所处的应变类型。由此对通常认为比较抽象的偏应力张量不变量的意义与作用有更深层次的理解。并且通过数值模拟的方法,采用偏应力张量不变量对圆环压缩和环壳液压胀形过程中金属的变形进行了分析,模拟结果和实验现象一致。
应力偏张量是二阶对称张量,它存在三个不变张量。应力偏张量的切应力分量、主切应力、最大切应力以及应力主轴等都与原应力张量相同。因此,应力偏张量只能使物体产生形状变化,而不能产生体积变化,即材料的塑性变形是由应力偏张量引起的。
物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并试图使物体从变形后的位置恢复到变形前的位置。
同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。对某种材料来说,应力可能达到的这个限度称为该种材料的极限应力。
极限应力值要通过材料的力学试验来测定。将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。
11楼:风吹基基扬
应力球张量(spherical stress tensor):
由一点处三个正应力的平均应力所组成的应力张量。球应力张量表示式为:
式中:球应力张量只引起变形物体的体积变化而不引起形状的变化。
12楼:匿名用户
即静水压力,三向等拉(压),与塑性屈服无关
应力球张量和应力偏张量的物理意义?高手解答一下!谢谢!!明确一点!
13楼:黑暗小舞
应力球张量是指改变大小的应力分量。应力偏张量是改变形状的应力分量。
就像极坐标下的平面,r表示大小,θ表示位置。就能确定一个点。
这里是张量。使得受力微元均匀改变大小的应力是球张量。球张量和微元的体积变化成正比。应力张量减去球张量。剩下的是偏张量。使得物体体积不变,外形变化