正分数指数幂a的m n次幂,n为何要大于

2020-11-22 17:22:42 字数 2603 阅读 7018

1楼:**ile龙

n相当于开几次根,最小开一次根,n还是大于一的整数

分数指数幂的意义,怎么理解它?为什么a^(m/n)=a的n次方的m次方根? 50

2楼:不是苦瓜是什么

分数指数幂是正分数指数幂和负分数指数幂的统称。

分数指数幂是一个数的指数为分数,正数的分数指数幂是根式的另一种表示形式。负数的分数指数幂并不能用根式来计算,而要用到其它算法,是高中代数的重点。

证明a^(m/n) = ( a^m) 开n 次方 , (a>0,m、n ∈z且n>1)

证:令 ( a^m) 开n 次方 = b

两边取 n次方,有

a^m = b^n

a^(m/n) = ( a^m)^(1/n) = ( b^n)^(1/n) = b = ( a^m) 开n 次方

即 a^(m/n) = ( a^m) 开n 次方

3楼:匿名用户

^^证明a^(m/n) = ( a^m) 开n 次方 , (a>0,m、n ∈z且n>1)

证:令 ( a^m) 开n 次方 = b

两边取 n次方,有

a^m = b^n

a^(m/n) = ( a^m)^(1/n) = ( b^n)^(1/n) = b = ( a^m) 开n 次方

即 a^(m/n) = ( a^m) 开n 次方

正数的分数指数幂的意义与负整数幂的意义相同。即a的n分之m次方=a的负n分之m次方分之一,是啥意思 40

4楼:刘灿华

^证明a^(m/n) = ( a^m) 开n 次方 , (a>0,m、n ∈z且n>1)

证:令 ( a^m) 开n 次方 = b

两边取 n次方,有

a^m = b^n

a^(m/n) = ( a^m)^(1/n) = ( b^n)^(1/n) = b = ( a^m) 开n 次方

即 a^(m/n) = ( a^m) 开n 次方

5楼:匿名用户

a^(m/n)=1/(a^(-m/n))

分数指数幂的底数一定要大于零吗?

6楼:匿名用户

来自英语牛人团,望采纳一下,谢谢你了哦!

7楼:魏蜀吴

正以并不迂回的 直线距离 被邮寄

我拥有著一双 拥有著荷兰传统彩绘风的木鞋我以为应该适合 我以为应该的那一个你

有些事是只能在心里美丽

屋檐上那行踪飘忽 脚步蹑手蹑脚的好奇

8楼:李佳龙

不一定啊,只有分母为偶数的时候就必须为正数了。

例如: (-8)的三分之一次幂,结果是-2; -8的二分之一次幂就不存在。

分数指数幂扩展:

分数指数幂是一个数的指数为分数,如2的1/2次幂就是根号2。

分数指数幂是根式的另一种表示形式,

即n次根号(a的m次幂)可以写成a的m/n次幂。

幂是指数值,如8的1/3次幂=2

一个数的b分之a次方等于b次根号下这个数的a次方重点:1、分数指数幂的含义的理解。

2、根式与分数指数幂的互化。

3、有理指数幂的运算性质。

难点:1、分数指数幂概念的理解。

2、有理指数幂的运算和化简

正分数指数幂a为什么不能小于零

9楼:长生果果

分数指数幂相当于将a开根号再乘方,因为根号里面的数不能小于零,所以正分数指数幂a不能小于零。(如果你觉得有用,请采纳,谢谢。)

10楼:匿名用户

这是高中及以前,为了学生理解、计算方便而界定的

高中之后,尤其是大学又会有新的界定

你现在没必须扣的那么细,就当它是定理、定律记住就行

分数指数幂am/n的意义是什么

11楼:匿名用户

m,n是正整数时a^(m/n)=(a^m)的n次方根。

分数指数幂:a的(n/m)次方中,a必须大于0的原因??

12楼:只爱今生的你

这是a的(n/m)次方能够得出的 条件没理由

13楼:郝双涛

因为分数指数幂包含开方,如小于0,该指数幂无意义

给定一个n阶矩阵a,输出a的m次幂什么意思

14楼:匿名用户

根据“x开n次方根=x的1/n次方”可知:

a^(m/n)=(a^m)^(1/n)=n次方√a^m

正数的正分数指数幂的意义

15楼:紫荆花开花落

比如 a的4分之三次方 = a的3次方开4次方 是吧 如果a=-2的话 那么

a的3次方为-8啦 是不是 那-8再开4次方 还有意义吗?没有了 所以a一定要大于0 。

本来 想用数学公式软件的 谁知复制不了 。。

正整数指数幂的底数需要大于零吗,分数指数幂的底数一定要大于零吗?

1楼 郭敦顒 郭敦顒回答 函数y ax 为幂函数 其定义域为 所以底数x是可以大于或小于 等于0的 但当x 0时,指数应是 0。 2楼 匿名用户 可以等于0,如果是负指数幂就不能等于0,因为等于0的话,化成分式的形式,分母就等于0了,那么就没有意义了 分数指数幂的底数一定要大于零吗? 3楼 匿名用户...