大数据时代下,传统统计学有哪些变革

2020-11-18 12:16:51 字数 5118 阅读 4410

1楼:匿名用户

“社会统计学与数理统计学的统一”理论的重大意义

王见定教授指出:社会统计学描述的是变量,数理统计学描述的是随机变量,而变量和随机变量是两个既有区别又有联系,且在一定条件下可以相互转化的数学概念。王见定教授的这一论述在数学上就是一个巨大的发现。

我们知道“变量”的概念是17世纪由著名数学家笛卡尔首先提出,而“随机变量”的概念是20世纪30年代以后由苏联学者首先提出,两个概念的提出相差3个世纪。截至到王见定教授,世界上还没有第二个人提出变量和随机变量两者的联系、区别以及相互的转化。我们知道变量的提出造就了一系列的函数论、方程论、微积分等重大数学学科的产生和发展;而随机变量的提出则奠定了概率论和数理统计等学科的理论基础和促进了它们的蓬勃发展。

可见变量、随机变量概念的提出其价值何等重大,从而把王见定教授在世界上首次提出变量、随机变量的联系、区别以及相互的转化的意义称为巨大、也就不视为过。

下面我们回到:“社会统计学和数理统计学的统一”理论上来。王见定教授指出社会统计学描述的是变量,数理统计学描述的是随机变量,这样王见定教授准确地界定了社会统计学与数理统计学各自研究的范围,以及在一定条件下可以相互转化的关系,这是对统计学的最大贡献。

它结束了近400年来几十种甚至上百种以上五花八门种类的统计学混战局面,使它们回到正确的轨道上来。

由于变量不断地出现且永远地继续下去,所以社会统计学不仅不会消亡,而且会不断发展状大。当然数理统计学也会由于随机变量的不断出现同样发展状大。但是,对随机变量的研究一般来说比对变量的研究复杂的多,而且直到今天数理统计的研究尚处在较低的水平,且使用起来比较复杂;再从长远的研究来看,对随机变量的研究最终会逐步转化为对变量的研究,这与我们通常研究复杂问题转化为若干简单问题的研究道理是一样的。

既然社会统计学描述的是变量,而变量描述的范围是极其宽广的,绝非某些数理统计学者所云:社会统计学只作简单的加、减、乘、除。从理论上讲,社会统计学应该复盖除数理统计学之外的绝大多数数学学科的运作。

所以王见定教授提出的:“社会统计学与数理统计学统一”理论,从根本上纠正了统计学界长期存在的低估社会统计学的错误学说,并从理论上和应用上论证了社会统计学的广阔前景。

大数据时代对社会带来哪些重要变革

2楼:du知道君

大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。 有人把数据比喻为蕴 藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。

与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。

大数据的价值体现在以下几个方面: 1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销; 2) 做小而美模式的中长尾企业可以利用大数据做服务转型; 3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

大数据时代和传统数据有什么区别?

3楼:八十八岁的我

传统的分析是基于结构化、关系性的数据,而且往往是取一个很小的数据集,来对整个数据进行**和判断。

大数据是对整个数据全集直接进行存储和管理分析。

大数据时代简介

“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用g或t来衡量。

4楼:马儿马儿快些跑

1,无疑,数据信息的大**不断提醒着,未来将会因大数据技术而改变。大数据(big

data)通常用来形容数字化时代下创造出的大量非结构化和半结构化数据。大数据无疑是未来影响各行各业发展的最受瞩目的技术之一。2009年时,全世界关于大数据的研究项目还非常有限,从2011年开始,越来越多的管理者开始意识到,大数据将是未来发展不可规避的问题,而到2012年年底,世界财富500

强企业中90%的企业都开展了大数据的项目。idc的研究显示,到2015年,大数据市场前景将达到169亿美元的规模。当前所有企业的商业数据每隔1.2年就将递增一倍。

那么,大数据为什么成为所有人关注的焦点?大数据带来了什么样的本质性改变?为此,与中国计算机学会大数据学术带头人、中国人民大学信息学院院长杜小勇教授进行了访谈。

互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的**,如果真的想做,可以来这里,这个手技的开始数字是一八七中间的是三儿

零最后的是一四二五零,按照顺序组合起来就可以找到,想说的是,除非想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。

杜小勇教授认为,大数据带来了三大根本改变:第

一、大数据让人们脱离了对算法和模型的依赖,数据本身即可帮助人们贴近事情的真相;第

二、大数据弱化了因果关系。大数据分析可以挖掘出不同要素之间的相关关系。人们不需要知道这些要素为什么相关就可以利用其结果,在信息复杂错综的现代社会,这样的应用将大大提高效率;第

三、与之前的数据库相关技术相比,大数据可以处理半结构化或非结构化的数据。这将使计算机能够分析的数据范围迅速扩大。

2,传统数据和大数据的区别

第一、计算机科学在大数据出现之前,非常依赖模型以及算法。人们如果想要得到精准的结论,需要建立模型来描述问题,同时,需要理顺逻辑,理解因果,设计精妙的算法来得出接近现实的结论。因此,一个问题,能否得到最好的解决,取决于建模是否合理,各种算法的比拼成为决定成败的关键。

然而,大数据的出现彻底改变了人们对于建模和算法的依赖。举例来说,假设解决某一问题有算法a

和算法b。在小量数据中运行时,算法a的结果明显优于算法b。也就是说,就算法本身而言,算法a能够带来更好的结果;然而,人们发现,当数据量不断增大时,算法b在大量数据中运行的结果优于算法a在小量数据中运行的结果。

这一发现给计算机学科及计算机衍生学科都带来了里程碑式的启示:当数据越来越大时,数据本身(而不是研究数据所使用的算法和模型)保证了数据分析结果的有效性。即便缺乏精准的算法,只要拥有足够多的数据,也能得到接近事实的结论。

数据因此而被誉为新的生产力。

第二、当数据足够多的时候,不需要了解具体的因果关系就能够得出结论。

例如,google

在帮助用户翻译时,并不是设定各种语法和翻译规则。而是利用google数据库中收集的所有用户的用词习惯进行比较推荐。google检查所有用户的写作习惯,将最常用、出现频率最高的翻译方式推荐给用户。

在这一过程中,计算机可以并不了解问题的逻辑,但是当用户行为的记录数据越来越多时,计算机就可以在不了解问题逻辑的情况之下,提供最为可靠的结果。可见,海量数据和处理这些数据的分析工具,为理解世界提供了一条完整的新途径。

第三、由于能够处理多种数据结构,大数据能够在最大程度上利用互联网上记录的人类行为数据进行分析。大数据出现之前,计算机所能够处理的数据都需要前期进行结构化处理,并记录在相应的数据库中。但大数据技术对于数据的结构的要求大大降低,互联网上人们留下的社交信息、地理位置信息、行为习惯信息、偏好信息等各种维度的信息都可以实时处理,立体完整地勾勒出每一个个体的各种特征。

大数据和传统统计学的区别

5楼:匿名用户

统计学是大数据的三大基础学科之一,所以统计学与大数据之间的关系还是非常密切的。但在以下方面还是存在一定的不同。

一、知识体系不同

1、统计学注重的是方式方法;

2、大数据则更关注于整个数据价值化的过程,大数据不仅需要统计学知识,还需要具备数学知识和计算机知识。

二、技术体系结构不同

1、统计学知识主要应用在大数据分析领域,统计学方式是大数据分析的两种主要方式之一,另一种数据分析方式是机器学习。

2、大数据技术,不只是涉及到统计学,还有数学、计算机及各行业的学科内容。是学科交叉融合的一门新兴专业。

三、数据集不同

1、传统统计学由于可行性的原因,常常得到的只是一个样本,但是需要描述样本取自的那个大数据集。

2、大数据则常常可以得到数据总体,例如关于一个公司的所有职工数据,数据库中的所有客户资料等。在这种情形下,统计学的推断就没有价值了。

参考资料

大数据时代有哪些重要的思维变革

6楼:丑女专家

一场生活、工作与思维的大变革。大数据开启了一次重大的时代转型。

大数据时代的思维变革:1、更多。2、更杂。3、更好。

大数据时代下的变革三部曲:商业变革(二)

大数据时代下的变革三部曲:管理变革(三)

大数据时代和传统数据有什么区别

7楼:海牛大数据

大数据是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。

但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

扩展资料

大数据的价值体现在以三方面:

1、对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;

2、做小而美模式的中小微企业可以利用大数据做服务转型;

3、面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

大数据技术主要包括以下作用:

第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。

移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同**数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。

第二,大数据是信息产业持续高速增长的新引擎。

面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

第三,大数据利用将成为提高核心竞争力的关键因素。

各行各业的决策正在从“业务驱动” 转变“数据驱动”。

大数据是大量、高速、多变的信息,它需要新型的处理方式去促成更强的决策能力、洞察力与最佳化处理。大数据为企业获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。