47 102 47 2简便计算是什么运算律

2021-03-17 07:08:42 字数 7240 阅读 4985

1楼:夏天的小红花

47×102-47×2,的简便算法应用的是,提取47的公因数,成为47一百零102-2=100,所以原式就等于47×100=4700

2楼:匿名用户

简便计算运用乘法结合律。

变成47×(102-2)=47×100=4700,

这样计算简单很多。

3楼:匿名用户

47×102-47×2。等于47乘以括号102-2。再等于47×100。最好当月4700。这是运用了乘法分配律。

4楼:百度网友

“乘法分配律”逆运算

47x102-47x2=47x(102-2)

数学简便计算,有哪几种方法?

5楼:g老师讲

简便计算主要有三大方法,分别是加减凑整、分组凑整、提公因数法。

它采用数学计算中的拆分凑整思想,通过四则运算规律,从而简化计算。

就像68+77=?

大多数人不一定立刻能算出结果,

如果换成70+75=?

相信每一个人都可以一口算出和是145。

这里其实就是把77拆分成2+75,

68+77

=68+2+75

=70+75

=145

遇见复杂的计算式时,

先观察有没有可能凑整,

凑成整十整百之后再进行计算,

不仅简便,而且避免计算出错。

①加减凑整

【例题1】999+99+29+9+4=?

题中999,99,29,9这四个数字与整数1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把这4个1补到999,99,29,9上,原式就可以简化成:

999+99+29+9+4

=999+99+29+9+1+1+1+1

=999+1+99+1+29+1+9+1

=1000+100+30+10

=1140

【例题2】5999+499+299+19=?

看完例1,再来看看例2,还是末位都是9,自然要用我们的凑整法了,不过稍有不同,因为例2中没有4来拆分成1+1+1+1。

没有枪没有炮,自己去创造!

先把它加上1+1+1+1,然后再减去4,不就相当于式子加了一个0吗?

5999+499+299+19

=5999+1+499+1+299+1+19+1-4

=6000+500+300+20-4

=6816

②分组凑整

在只有加减法的计算题中,将算式中的各项重新分下组凑整,也可以使计算非常方便。

【例题3】100-95+92-89+86-83+80-77=?

题目中的两位数加减混合运算,硬算是非常费劲的,但是似乎又不能拆分凑整,再观察题目可以发现从第2个数95起,后面的数都比前一个小3。

根据加法减法运算性质,我们给相邻的项加上括号。

100-95+92-89+86-83+80-77

=(100-95)+(92-89)+(86-83)+(80-77)

=5+3+3+3

=14凑整法不仅可以用在加减计算中,乘除加减混合运算也常常会考到。

③提取公因数法

这就需要用到乘法分配律提取公因数,

又称为提取公因数法。

如果没有公因数,我们可以采取乘法结合律变化出公因数。

a×b=(a×10)×(b÷10),

a×b÷c=a÷c×b,

a×b×c=a×(b×c)。

【例题4】47.9x6.6+529x0.34=?

很明显题目中的6.6+3.4=10,我们想办法凑出一个3.

4,这就用到了a×b=(a×10)×(b÷10)。但是即使10凑出来,仍然不能提取公因数来简便计算,这就得用到乘法分配律,52.9x3.

4=(47.9+5)x3.4,创造出一个47.

9,方便我们提取公因数。

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+(47.9+5)x3.4

=47.9x(6.6+3.4)+17

=496

简便计算的考察重点在于四则运算规律的灵活运用,方法掌握的基础上,对于四则运算规律必须牢记在心,才能更好地理解运用。

6楼:执者失纸

主要有六大方法:

“凑整巧算”——运用加法的交换律、结合律进行计算。

运用乘法的交换律、结合律进行简算。

运用减法的性质进行简算,同时注意逆进行。

运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。

运用乘法分配律进行简算。

混合运算(根据混合运算的法则)。

具体解释:

一、“凑整巧算”——运用加法的交换律、结合律进行计算。

凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。

加法交换律

定义:两个数交换位置和不变,

公式:a+b =b+a,

例如:6+18+4=6+4+18

加法结合律

定义:先把前两个数相加,或者先把后两个数相加,和不变。

公式:(a+b)+c=a+(b+c),

例如:(6+18)+2=6+(18+2)

引申——凑整

例如:1.999+19.99+199.9+1999

=2+20+200+2000-0.001-0.01-0.1-1

=2222-1.111

=2220.889

二、运用乘法的交换律、结合律进行简算。

乘法交换律

定义:两个因数交换位置,积不变.

公式:a×b=b×a

例如:125×12×8=125×8×12

乘法结合律

定义:先乘前两个因数,或者先乘后两个因数,积不变。

公式:a×b×c=a×(b×c),

例如:30×25×4=30×(25×4)

三、运用减法的性质进行简算,同时注意逆进行。

减法定义:一个数连续减去两个数,可以先把后两个数相加,再相减。

公式:a-b-c=a-(b+c),【注意:a-(b+c)= a-b-c的运用】

例如:20-8-2=20-(8+2)

四、运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。

除法 定义:一个数连续除去两个数 ,可以先把后两个数相乘,再相除。

公式:a÷b÷c=a÷(b×c),

例如:20÷8÷1.25=20÷(8×1.25)

定义:除数除以被除数,把被除数拆为两个数字连除(这两个数的积一定是这个被除数)

例如:64 ÷16=64÷8÷2=8÷2=4

五、运用乘法分配律进行简算。

乘法分配律

定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。

公式:(a+b)×c=a×c+b×c

例如;2.5×(100+0.4)= 2.5×100+2.5×0.4= 250+1= 251

六、混合运算(根据混合运算的法则)。

学会数字搭配( 0.5和2、0.25和4、0.125和8)。

7楼:冉听筠

一)运用加法的交换律、结合律进行计算。要求学生善于观察题目,同时要有凑整意识。

如:5.7+3.1+0.9+1.3,等。

(二)运用乘法的交换律、结合律进行简算。

如:2.5×0.125×8×4等,如果遇到除法同样适用,或将除法变为乘法来计算。如:8.3×67÷8.3÷6.7等。

(三)运用乘法分配律进行简算,遇到除以一个数,先化为乘以一个数的倒数,再分配。

如:2.5×(100+0.4),还应注意,有些题目是运用分配律的逆运算来简算:即提取公因数。如:0.93×67+33×0.93。

(四)运用减法的性质进行简算。减法的性质用字母公式表示:a-b-c=a-(b+c),同时注意逆进行。

如:7691-(691+250)。

(五)运用除法的性质进行简算。除法的性质用字母公式表示如下:a÷b÷c=a÷(b×c),同时注意逆进行,

如:736÷25÷4。

(六)接近整百的数的运算。这种题型需要拆数、转化等技巧配合。

如;302+76=300+76+2,298-188=300-188-2,等。

(七)认真观察某项为0或1的运算。

如:7.93+2.07×(4.5-4.5)等。

总的说来,简便运算的思路是:(1)运用运算的性质、定律等。(2)可能打乱常规的计算顺序。

(3)拆数或转化时,数的大小不能改变。(4)正确处理好每一步的衔接。(5)速算也是计算,是将硬算化为巧算。

(6)能提高计算的速度及能力,并能培养严谨细致、灵活巧妙的工作习惯。

数学简便计算,有哪几种方法

8楼:冰夏

一、运用乘法分配律简便计算

简便计算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38x101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。

38x101

=38x(100+1)

=38x100+38x1

=3800+38

=3838

例2:47x98,这样该怎么拆呢?要拆98,使它更接近100。

47x98

=47x(100-2)

=47x100-47x2

=4700-94

=4606

二、基准数法

在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。

例:2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法结合律法

对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。

例:5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30四、拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.

5,4和2.5,8和1.25等。

注意不要改变数的大小哦!

例:3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

这个方法实际上是运用了乘法分配律,将相同因数提取出来。

例:0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

9楼:g老师讲奥数

简便计算是采用数学计算中的拆分凑整思想,通过四则运算规律,从而简化计算的方法。

就像68+77=?

大多数人不一定立刻能算出结果,

如果换成70+75=?

相信每一个人都可以一口算出和是145。

这里其实就是把77拆分成2+75,

68+77

=68+2+75

=70+75

=145

遇见复杂的计算式时,

先观察有没有可能凑整,

凑成整十整百之后再进行计算,

不仅简便,而且避免计算出错。

①加减凑整,g老师讲奥数(微)

【例题1】999+99+29+9+4=?

题中999,99,29,9这四个数字与整数1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把这4个1补到999,99,29,9上,原式就可以简化成:

999+99+29+9+4

=999+99+29+9+1+1+1+1

=999+1+99+1+29+1+9+1

=1000+100+30+10

=1140

【例题2】5999+499+299+19=?

看完例1,再来看看例2,还是末位都是9,自然要用我们的凑整法了,不过稍有不同,因为例2中没有4来拆分成1+1+1+1。

没有枪没有炮,自己去创造!

先把它加上1+1+1+1,然后再减去4,不就相当于式子加了一个0吗?

5999+499+299+19

=5999+1+499+1+299+1+19+1-4

=6000+500+300+20-4

=6816

②分组凑整,g老师讲奥数(微)

在只有加减法的计算题中,将算式中的各项重新分下组凑整,也可以使计算非常方便。

【例题3】100-95+92-89+86-83+80-77=?

题目中的两位数加减混合运算,硬算是非常费劲的,但是似乎又不能拆分凑整,再观察题目可以发现从第2个数95起,后面的数都比前一个小3。

根据加法减法运算性质,我们给相邻的项加上括号。

100-95+92-89+86-83+80-77

=(100-95)+(92-89)+(86-83)+(80-77)

=5+3+3+3

=14凑整法不仅可以用在加减计算中,乘除加减混合运算也常常会考到。

③提取公因数法,g老师讲奥数(微)

这就需要用到乘法分配律提取公因数,

又称为提取公因数法。

如果没有公因数,我们可以采取乘法结合律变化出公因数。

a×b=(a×10)×(b÷10),

a×b÷c=a÷c×b,

a×b×c=a×(b×c)。

【例题4】47.9x6.6+529x0.34=?

很明显题目中的6.6+3.4=10,我们想办法凑出一个3.

4,这就用到了a×b=(a×10)×(b÷10)。但是即使10凑出来,仍然不能提取公因数来简便计算,这就得用到乘法分配律,52.9x3.

4=(47.9+5)x3.4,创造出一个47.

9,方便我们提取公因数。

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+(47.9+5)x3.4

=47.9x(6.6+3.4)+17

=496

简便计算的考察重点在于四则运算规律的灵活运用,方法掌握的基础上,对于四则运算规律必须牢记在心,才能更好地理解运用。