食品中的水有几种存在状态,它们各自的含义如何

2021-01-28 06:08:16 字数 1543 阅读 7655

1楼:匿名用户

共有两种形态

一、自由水:滞化水、毛细管水、自由流动水;

自由水,不被植物细胞内胶体颗粒或大分子所吸附、能自由移动、并起溶剂作用的水。在细胞中所起的作用各异。由于两者的比例不同,会影响到原生质的物理性质,进而影响代谢的强度。

自由水占总含水量的比例越大,使原生质的粘度越小,且呈溶胶状态,代谢也愈旺盛。 生物代谢旺盛,结合水可转化为自由水,使结合水与自由水的比例降低。当生物代谢缓慢,自由水可转换为结合水,使结合水与自由水比例上升。

自由水越多,代谢越旺盛。结合水多抗旱性越强。代谢越旺盛,年龄越小,自由水含量越高。

细胞中绝大部分的水以游离的形式存在,可以自由流动,叫做自由水。

自由水在食品储存与加工中有重要作用,食物储存时间的长短,冻存后的品质都与自由水有关系。此外,自由水还是食品中微生物代谢的必要条件,若自由水含量低,那么微生物将无法生存,食品就不会产生微生物腐败。

二、结合水:构成水、邻近水、多层水。

结合水是水在生物体和细胞内的存在状态之一,是吸附和结合在有机固体物质上的水,主要是依靠氢键与蛋白质的极性基(羧基和氨基)相结合形成的水胶体。

结合水是指在细胞内与物质结合,不易流动的水。

水分子中的氢原子与氧原子间有一个角度,这使氧侧带部分负电荷, 氢测带部分正电荷。水分子的偶极性质让它们彼此间及水分子与其他极性分子间容易形成氢键。如na离子带正电荷就可吸引分子的带负电的部分,使水环绕其周围形成水化的钠离子;cl-带负电,可吸引水的带正电部分,从而与水形成水化氯离子。

简单有机物的氨基、羧基、羟基或羰基均可与水结合。生物大分子往往兼有极性基(亲水)和非极性基(疏水),如蛋白质、核酸、极性脂类等。在水的环境中,其非极性基常藏于结构的内部而极性基则分布于表面,故也可和水分子结合。

所有这些结合水不再能溶解其他物质,也难于流动。心肌含水79%,与血液的含水量相差不多;但其所含的水均为结合水,故呈坚实的形态。供参考。

食品中水的存在状态有哪些

2楼:北京智云达科技股份****

一、自由

抄水 free water(游离袭水)

游离水主要存在植物细胞间bai隙,

具有水的一切特du

性,也就是说100℃时zhi水要沸腾,dao0℃以下要结冰,并且易汽化。游离水是我们食品的主要分散剂,可以溶解糖、酸、无机盐等,可用简单的热力方法除掉。

二、结合水 bound water

1、束缚水

这种水是与食品中脂肪fat、蛋白质protein、碳水化合物cho等形式结合状态。它是从氢键的形式与有机物的活性基团结合在一起,故称束缚水。束缚水不具有水的特性,所以要除掉这部分水是困难的。

特点:①不易结冰(冰点为-40℃)

②不能作为溶质的溶剂

2、结晶水

是以配价键的形式存在,它们之间结合的很牢固,难以用普通方法除这一部分水。

在烘干食品时,自由水就容易气化,而结合水就难于气化。冷冻食品时,自由水冻结,而结合水在-30℃仍然不冻。结合水和食品的构成成分结合,稳定食品的活性基,自由水促使腐蚀食品的微生物繁殖和酶起作用,并加速非酶褐变或脂肪氧化等化学劣变。