向日葵的叶子为什么是按照斐波那契数列来排列的

2021-01-21 12:09:03 字数 4390 阅读 8810

1楼:匿名用户

有些花瓣的数量和花序的排列确实体现出了斐波那契数列,但是大多数植物的花瓣和叶片排列并不会遵循这个原则。

斐波那契数列都有哪些规律

2楼:匿名用户

斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越数e(可以推出更多),**矩形、**分割、等角螺线,十二平均律等。

合并图册(2张)

斐波那契数与植物花瓣3………………………

百合和蝴蝶花5……………………

蓝花耧斗菜、金凤花、飞燕草、毛茛花8………………………

翠雀花13………………………

金盏和玫瑰21……………………

紫宛34、55、89……………雏菊

斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。

叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。

**分割

随着数列项数的增加,前一项与后一项之比越来越逼近**分割的数值0.6180339887..…

杨辉三角

将杨辉三角左对齐,成如图所示排列,将同一斜行的数加起来,即得一数列1、1、2、3、5、8、……

公式表示如下:

f⑴=c(0,0)=1。

f⑵=c(1,0)=1。

f⑶=c(2,0)+c(1,1)=1+1=2。

f⑷=c(3,0)+c(2,1)=1+2=3。

f⑸=c(4,0)+c(3,1)+c(2,2)=1+3+1=5。

f⑹=c(5,0)+c(4,1)+c(3,2)=1+4+3=8。

f⑺=c(6,0)+c(5,1)+c(4,2)+c(3,3)=1+5+6+1=13。

……f(n)=c(n-1,0)+c(n-2,1)+…+c(n-1-m,m) (m<=n-1-m)

矩形面积

斐波那契数列与矩形面积的生成相关,由此可以导出一个斐波那契数列的一个性质。

斐波那契数列前几项的平方和可以看做不同大小的正方形,由于斐波那契的递推公式,它们可以拼成一个大的矩形。这样所有小正方形的面积之和等于大矩形的面积。则可以得到如下的恒等式:

质数数量

斐波那契数列的整除性与质数生成性

每2个连续的数中有且只有一个被2整除,

每3个连续的数中有且只有一个被3整除,

每4个连续的数中有且只有一个被5整除,

每5个连续的数中有且只有一个被8整除,

每6个连续的数中有且只有一个被13整除,

每7个连续的数中有且只有一个被21整除,

每8个连续的数中有且只有一个被34整除,

.......

我们看到第5、7、11、13、17、23位分别是质数:5,13,89,233,1597,28657(第19位不是)

斐波那契数列的质数无限多吗?

尾数循环

斐波那契数列的个位数:一个60步的循环

11235,83145,94370,77415,61785.38190,

99875,27965,16730,33695,49325,72910…

进一步,斐波那契数列的最后两位数是一个300步的循环,最后三位数是一个1500步的循环,最后四位数是一个15000步的循环,最后五位数是一个150000步的循环。

自然界中“巧合”

斐波那契数列在自然科学的其他分支,有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。

这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。

另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……

其中百合花花瓣数目为3,梅花5瓣,飞燕草8瓣,万寿菊13瓣,向日葵21或34瓣,雏菊有34,55和89三个数目的花瓣。

斐波那契螺旋:具有13条顺时针旋转和21条逆时针旋转的螺旋的蓟的头部

这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。

叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是222.5度,这个角度称为“**角度”,因为它和整个圆周360度之比是**分割数0.618033989……的倒数,而这种生长方式就决定了斐波那契螺旋的产生。

向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条。1992年,两位法国科学家通过对花瓣形成过程的计算机**实验,证实了在系统保持最低能量的状态下,花朵会以斐波那契数列长出花瓣。

数字谜题

三角形的三边关系定理和斐波那契数列的一个联系:

现有长为144cm的铁丝,要截成n小段(n>2),每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为多少?

分析:由于形成三角形的充要条件是任何两边之和大于第三边,因此不构成三角形的条件就是存在两边之和不超过另一边。截成的铁丝最小为1,因此可以放2个1,第三条线段就是2(为了使得n最大,因此要使剩下来的铁丝尽可能长,因此每一条线段总是前面的相邻2段之和),依次为:

1、1、2、3、5、8、13、21、34、55,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时n达到最大为10。

我们看到,“每段的长度不小于1”这个条件起了控制全局的作用,正是这个最小数1产生了斐波那契数列,如果把1换成其他数,递推关系保留了,但这个数列消失了。这里,三角形的三边关系定理和斐波那契数列发生了一个联系。

在这个问题中,144>143,这个143是斐波那契数列的前n项和,我们是把144超出143的部分加到最后的一个数上去,如果加到其他数上,就有3条线段可以构成三角形了。

影视作品中的斐波那契数列

斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的《达芬奇密码》里它就作为一个重要的符号和情节线索出现,在《魔法玩具城》里又是在店主招聘会计时随口问的问题。可见此数列就像**分割一样流行。可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究。

在电视剧中也出现斐波那契数列,比如:日剧《考试之神》第五回,义嗣做全国模拟考试题中的最后一道数学题~在fox热播美剧《fringe》中更是无数次引用,甚至作为全剧宣传海报的设计元素之一。

3楼:王日鹏

“斐波那契数列”或“斐波那切数列”)是一个非常美丽、和谐的数列,它的形状可以用排成螺旋状的一系列正方形来说明(如右词条图),起始的正方形(图中用灰色表示)的边长为1,在它左边的那个正方形的边长也是1 ,在这两个正方形的上方再放一个正方形,其边长为2,以后顺次加上边长为3、5、8、13、2l……等等的正方形。这些数字每一个都等于前面两个数之和,它们正好构成了斐波那契数列。“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(leonardo fibonacci,生于公元1170年,卒于1240年。

籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(liber abaci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34…… 这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:

(1/√5)* (√5表示5的算术平方根) (19世纪法国数学家敏聂(jacques phillipe marie bi*** 1786-1856)很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。 斐波拉契数列的出现13世纪初,欧洲最好的数学家是斐波拉契;他写了一本叫做《算盘书》的著作,是当时欧洲最好的数学书。

书中有许多有趣的数学题,其中最有趣的是下面这个题目: “如果一对大家都叫它“斐波拉契数列”,又称“兔子数列”。这个数列有许多奇特的的性质,例如,从第3个数起,每个数与它后面那个数的比值,都很接近于0.

618,正好与大名鼎鼎的“**分割律”相吻合。人们还发现,连一些生物的生长规律,在某种假定下也可由这个数列来刻画呢。

4楼:山野田歩美

《从一到无穷大》

《数学的魅力》

《啊哈,原来如此》