高数求极限,尽量过程能够解释,高数求极限,尽量过程能够解释。 10

2021-01-05 08:35:41 字数 1289 阅读 5571

1楼:叶达人琪琪

我们在做等价无穷小替换的时候一定要注意,加减原则上不替换的(拆分后极限都存在可以替换),乘积可以替换。

加减不可以替换,是因为替换后将原式中的高阶无穷小项忽略了。此题就是这样的,sinx=x-x^3/3!+o(x^3),如果你直接替换的话,那么就等于把x^3项忽略了,而此项正是决定此极限的重要项。

如果此题分子是x的话,那么可以替换,因为替换以后两项极限都存在,等于极限1-1=0情况。

求这道高数求极限题的详细过程,最好有解释

2楼:坤果果

第一步到第二步:使用洛必达法则(0/0型分子分母同求导)你应该懂吧,不懂的话我再追加解释~

第二步到第三步:使用等价无穷小sinx~x,此时可以把分子分母中的x约掉,得到常数-1/4

3楼:最爱浮生若梦

呵呵,那你解释下为什么编辑说新福克斯的车尾更灵活,侧倾大小只影响操控感,跟极限毫无关系,否则还搞

高数求解释极限

4楼:一知二

你用洛必达法则时求导求错了

这题用洛必达法则可能求不出来

5楼:匿名用户

【你把分子的导数求错了。】

高数,求极限,需过程 10

6楼:匿名用户

利用有界变量与无穷小乘积是无穷小,即极限为0。

注:前半部分是无穷小,后半部分是有界的。

(高数)求解极限,要过程

7楼:匿名用户

当x→1时,分子x-x+1→1,分母(x-1)→+0,

所以分式的极限→1/0→+∞

结论:本式的极限为+∞

求极限,求解释, 30

8楼:pasirris白沙

1、下面的**解答中,提供了两种方法:

第一种解答方法是:先做变量代回换,然后运用重要答极限 sinx/x =1;

第二种解答方法是:运用罗毕达求导法则。

.2、具体解答过程如下,如有疑问,欢迎追问,有问必答。

.3、若点击放大,**更加清晰。...

一道高数题,极限的计算的问题,解释下过程,尽量详细点吧,不要太抽象,第五题。

9楼:匿名用户

这个题选c,利用无穷小与有界函数的乘积为无穷小

高数求极限图中这样写为什么不对,求图中过程为什么不对

1楼 匿名用户 对任意常数c r,把c均分为 分,则每一份均为0 0 c,c r,并不是 0 求图中过程为什么不对 2楼 夜见 安 因为分子分母的极限都为无穷,所以不能单独拆开求极限,也就是说不能对分母就行无穷小代换,所以这个式子才不能使用。它的理论是极限的除法原理的使用,和这个极限本身并无太大关系...