如何做数学几何需要画辅助线的题,为什么我做数学几何题不会画辅助线 不能迅速的知道怎么做

2020-12-08 21:22:28 字数 6090 阅读 6772

1楼:叽里咕噜

其实初中辅助线的题目就那么集中,有中线就延长一半,还有角平分线什么的,这些都要做题自己去归纳,不然别人告诉你你也记不进去,要么就问老师,那几个范本典例,最可怕的辅助线是做辅助圆……

为什么我做数学几何题不会画辅助线 不能迅速的知道怎么做

2楼:紫色学习

口诀:一做连结,延长并相交,三做平行线,四做垂线这些是比较基础的。当然还有其他的,比如说倍长中线等等。

口诀是死的,题是活的,你要对知识点掌握得透彻些,那么就可以看出来这些隐藏的线了。

比如说三角形全等,你得先透彻理解全等的证明依据,然后做题的时候,就可以发现添加一些线就可以使用全等的知识,那么就可以据此做辅助线了。

题中有角平分线,可向两边作垂线.

线段垂直平分线,可向两端把线连.

三角形中两中点,连结则成中位线.

三角形中有中线,延长中线同样长.

成比例,正相似,经常要作平行线.

圆外若有一切线,切点圆心把线连.

如果两圆内外切,经过切点作切线.

两圆相交于两点,一般作它公共弦.

是直径,成半圆,想做直角把线连.

作等角,添个圆,证明题目少困难.

辅助线,是虚线,画图注意勿改变.

图中有角平分线,可向两边作垂线.

也可将图对折看,对称以后关系现.

角平分线平行线,等腰三角形来添.

角平分线加垂线,三线合一试试看.

线段垂直平分线,常向两端把线连.

要证线段倍与半,延长缩短可试验.

三角形中两中点,连接则成中位线.

三角形中有中线,延长中线等中线.

平行四边形出现,对称中心等分点.

梯形里面作高线,平移一腰试试看.

平行移动对角线,补成三角形常见.

证相似,比线段,添线平行成习惯.

等积式子比例换,寻找线段很关键.

直接证明有困难,等量代换少麻烦.

斜边上面作高线,比例中项一大片.

半径与弦长计算,弦心距来中间站.

圆上若有一切线,切点圆心半径连.

切线长度的计算,勾股定理最方便.

要想证明是切线,半径垂线仔细辨.

是直径,成半圆,想成直角径连弦.

弧有中点圆心连,垂径定理要记全.

圆周角边两条弦,直径和弦端点连.

弦切角边切线弦,同弧对角等找完.

要想作个外接圆,各边作出中垂线.

还要作个内接圆,内角平分线梦圆

如果遇到相交圆,不要忘作公共弦.

内外相切的两圆,经过切点公切线.

若是添上连心线,切点肯定在上面.

要作等角添个圆,证明题目少困难.

辅助线,是虚线,画图注意勿改变.

假如图形较分散,对称旋转去实验.

基本作图很关键,平时掌握要熟练.

解题还要多心眼,经常总结方法显.

切勿盲目乱添线,方法灵活应多变.

分析综合方法选,困难再多也会减

初中数学几何证明题辅助线怎么画?有什么技巧吗?

3楼:匿名用户

三角形:作高,有中点用中线倍长法或作中位线梯形:作高,平移腰,平移对角线,延长两腰交于一点正方形,菱形,平行四边形:连接对角线,将其中的小图形平移或旋转,作垂线

圆:连半径,连直径,遇见切线或弦就作垂线

4楼:晓晓云的寒冷

初中数学几何证明题辅助线一般画成虚线,画辅助线的原则(技巧)如下:

揭示图形中隐含的性质:当条件与结论间的逻辑关系不明朗时,通过添加适当的辅助线,将条件中隐含的有关图形的性质充分揭示出来。以便取得过渡性的推论,达到推导出结论的目的。

2.聚拢集中原则:通过添置适当的辅助线,将图形中分散,远离的元素,通过变换和转化,使他们相对集中,聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论。

3.构造图形的作用:对一类几何证明,常须用到某种图形,这种图形在题设条件所给的图形中却没有发现,必须添置这些图形,才能导出结论,常用方法有构造出线段和角的和差倍分,新的三角形,直角三角形,等腰三角形等。

5楼:匿名用户

在初中数学几何学习中,如何添加辅助线是许多同学感到头疼的问题,许多同学常因辅助线的添加方法不当,造成解题困难。以下是常见的辅助线作法编成了一些“顺口溜” 歌诀。

人人都说几何难,难就难在辅助线。辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。

如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。辅助线,是虚线,画图注意勿改变。

基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

6楼:匿名用户

一个图,你看着哪好像差根线,你就用铅笔描一下,分析一下有了这根线哪线角相等,哪相角互补之类的.不可以只盯着原图看.另外,看已知条件里,把它们标注在图里,看人家给这个条件,你可以知道什么,这个条件有什么用,可以由此推出什么.

不过你得把原理推理这些全都理解,并在脑海里能立刻把原理推反映成一个相应的图形.试着多做些题,肯定会有进步的. 有中点的优先考虑中点,然后是平分线

7楼:匿名用户

lz记住初中题目都是不会很难的。其实都是用学到的一些知识 拿到题目后自己画个图 然后再根据题目的信息仔细思考牵涉到哪些知识点。在试着画辅助线 一般是从结论往条件推会跟明朗。

8楼:厚雄徐欣怿

人说几何很困难,难点就在辅助线

。辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

几何证题难不难,关键常在辅助线;

知中点、作中线,中线处长加倍看;

底角倍半角分线,有时也作处长线;

线段和差及倍分,延长截取证全等;

公共角、公共边,隐含条件须挖掘;

全等图形多变换,旋转平移加折叠;

中位线、常相连,出现平行就好办;

四边形、对角线,比例相似平行线;

梯形问题好解决,平移腰、作高线;

两腰处长义一点,亦可平移对角线;

正余弦、正余切,有了直角就方便;

特殊角、特殊边,作出垂线就解决;

实际问题莫要慌,数学建模帮你忙;

圆中问题也不难,下面我们慢慢谈;

弦心距、要垂弦,遇到直径周角连;

切点圆心紧相连,切线常把半径添;

两圆相切公共线,两圆相交公共弦;

切割线,连结弦,两圆三圆连心线;

基本图形要熟练,复杂图形多分解;

以上规律属一般,灵活应用才方便。

9楼:匿名用户

一定要用虚线画!基本上是注意平行,垂直几种直线的关系,会用平移,

注意特殊点(中点,xx交点,顶点),

作辅助线一般还能用延长或补或割还有中位线啦什么的,总之要考察做题经验的积累,做得越多找得越溜到。

一般在做数学几何题型的时候,如果需要添加辅助线,如何根据题目来添加需要的辅助线,而不盲目乱添呢?

10楼:复仇的小鸟

看已知条件,要算什么,然后就结合起来就行了 追问: 晕 可以详细点吗 回答: 呃,你看能把什么未知条件算出来,然后再看要求的是什么,把线放在那些条件中 追问:

额 好吧

初三数学,像这种要画辅助线的几何题目一般要从**下手?

11楼:儒雅的夜焱辰

一般画平行线,取中点连结,作垂线

12楼:匿名用户

初中几何常见辅助线作法歌诀

人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。