数学与生活征文急,数学家的故事征文 急!!!!!!!!

2020-11-27 05:02:22 字数 5051 阅读 2273

1楼:匿名用户

说起数学与生活,你可能会奇怪数学与生活有声没关系呢?其实数学与我们的生活息息相关,只要你有一双善于发现的眼睛,你会发现生活到处都闪烁的数学的身影,我们是离不开数学的。下面我们就看几个,我们不难发现的例子吧。

我们每天捧着碗吃饭,会不会想到我们用的玩为什么是这个样子的呢?其实吃饭用的碗经过,很长一段时间的发展,才变成现在这个样子的,圆的轮廓,可以胜更多的东西,中心对称,既美观使用清又方便,哦数学就在我身边呀。

我们美丽的首都北京,紫禁城城建筑群,的建筑风格就是利用了数学的,轴对称,国外的游客,对紫禁城的庞大,整齐感到惊讶,其实这就是数学的魅力,这就有数学的身影因为有数学,我们的科学家,才计算得出,卫星在宇宙中的运行轨道,卫星我们才能将卫星发生升空,有卫星我们才能,打**,看天气预报,才能看电视,所以我们的生活离不开数学。

美丽的大都市,到处都是高楼大厦,我们居住的房子,墙角藏着直线,墙壁里隐者平面,阶梯中含着长方体,花园的边缘,有着圆圈,我们看的电视屏幕做成长方形,我家的稳当的小桌子,藏着三角形支架,我教的水管做成圆的,打开水龙头氺可以哗哗的,快速流出,我们做的公共汽车,轮子做成圆的,才那么稳。

仔细观察一下,我们会发现。我们的生活到处都包含着数学,没有数学,我们的生活会多么糟啊,我要学好数学。

2012六年级数学与生活征文比赛怎么写?十万火急!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2楼:

写数学日记就可以了!

3楼:匿名用户

写你去买菜发生的趣事,或者因马虎而发生的囧事,都ok啊,,小脑筋动起来,,哈哈哈。

我也姓姚,比你大一点。。

数学家的故事征文 急!!!!!!!!

4楼:匿名用户

印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?

,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。

高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。

2、大海边的阿基米德

2005-5-29 18:21:39 来 源:《中国校外教育》 网络资源 阅读517次

阿基米德11岁那年,离开了父母,来到了古希腊最大的城市之一的亚历山大里亚求学。当时的亚历山大里亚是世界闻名的**和文化交流中心,城中图书馆异常丰富的藏书,深深地吸引着如饥似渴的阿基米德。

当时的书是订在一张张的羊皮上的,也有用莎草茎剖成薄片压平后当作纸,订成后粘成一大张再卷在圆木棍上。那时没有发明印刷术,书是一个字一个字抄成的,十分宝贵。阿基米德没有纸笔,就把书本上学到的定理和公式,一点一点地牢记在脑子里。

阿基米德攻读的是数学,需要画图形、推导公式、进行演算。没有纸,就用小树枝当笔,把大地当纸,因为地面太硬,写上去的字迹看不清楚,阿基米德苦想了几天,又发明了一种"纸",他把炉灰扒出来,均匀地铺在地面上,然后在上面演算。可是有时天公不作美,风一刮,这种"纸"就飞了。

一天,阿基米德来到海滨散步,他一边走一边思考着数学问题。无边无垠的沙滩,细密而柔软的沙粒平平整整地铺展在脚下,又伸向远方。他习惯地蹲下来,顺手捡起一个贝壳,便在沙滩上演算起来,又好又便捷。

回到住地,阿基米德十分兴奋地告诉他的朋友们说:"沙滩,我发现沙滩是最好的学习地方,它是那么广阔,又是那么安静,你的思想可以飞翔到很远的地方,就象是飞翔在海面上的海鸥一样。"神奇的沙滩、博大的海洋,给人智慧,给人力量。

打那以后,阿基米德喜欢在海滩上徜洋徘徊,进行思考和学习。从求学的少年时代开始一直保持到生命的最后一息。公元前212年,罗马军队攻占了阿基米德的家乡叙拉古城。

当时,已75岁高龄的阿基米德正在沙滩上聚精会神地演算数学,对于敌军的入侵竟丝毫未觉察。当罗马士兵拔出剑来要杀他的时候,阿基米德安静地说:"给我留下一些时间,让我把这道还没有解答完的题做完,免得将来给世界留下一道尚未证完的难题。"

5楼:匿名用户

阿基米德确立了杠杆定律后,就推断说,只要能够取得适当的杠杆长度,任何重量都可以用很小的力量举起来。据说他曾经说过这样的豪言壮语:"给我一个支点、我就能举起地球”叙拉古国王听说后,对阿基米德说:

"凭着宙斯起誓,你说的事真是奇怪,阿基米德!"阿基米德向国王解释了杠杆的特性以后,国王说:"到**去找一个支点,把地球撬起来呢?

""这样的支点是没有的。"阿基米德回答说。

"那么,要叫人相信力学的神力就不可能了?" 国王说。

"不,不,你误会了,陛下,我能够给你举出别的例子。"阿基米德说。

国王说:"你太吹牛了!你且替我推动一样重的东西,看你讲的话怎样。

"当时国王正有一个困难的问题,就是他替埃及国王造了一艘很大的船。船造好后,动员了叙拉古全城的人,也没法把它推下水。阿基米德说:

"好吧,我替你来推这一只船吧。"

阿基米德离开国王后,就利用杠杆和滑轮的原理,设计、制造了一套巧妙的机械。把一切都准备好后,阿基米德请国王来**大船下水。他把一根粗绳的末端交给国王,让国王轻轻拉一下。

顿时,那艘大船慢慢移动起来,顺利地滑下了水里,国王和大臣们看到这样的奇迹,好象看耍魔术一样,惊奇不已!于是,国王信服了阿基米德,并向全国发出布告:"从此以后,无论阿基米德讲什么,都要相信他……"

6楼:爱静的山

华罗庚出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师.

少年时期的华罗庚就特别爱好数学,但数学成绩并不突出.19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来.从此在熊庆来先生的引导下,走上了研究数学的道路.晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生! 华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物.下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏: 有位老师,想辨别他的3个学生谁更聪明.他采用如下的方法:

事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色.

3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子

聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?“ 为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题.因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽.但他踌躇了一会,可见我戴的是白帽.

这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了.假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子. 看到这里。同学们可能会拍手称妙吧.后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解.他并告诫我们:

复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃.

7楼:匿名用户

数学家的故事——祖冲之

祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.

祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.

1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".

祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.

祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".

求有关于数学与生活的演讲稿!!!!!!!!!!!!急啊

8楼:匿名用户

我热爱的数学

曾经看到这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网。所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。

正是因为我想用网去捉鱼,我才选择了数学. 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去。

所以,站在数学的高峰上的人,都是从内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。虽然我现在还没有站在高峰,但是我还是希望在山峰上看到山下的美丽风景。

急求数学家的故事要短,急求数学家的故事 10篇 要短

1楼 百度用户 大约1500年前,欧洲的数学家们是不知道用 0 的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。 在这种数字的运用里,不需要 0 这个数字。 而在当时,罗马帝国有一位学者从印度记数法里发现了 0 这个符号。他发现,有了 0 ,进行数 算...