1楼:匿名用户
心肌收缩的特点:
①同步收缩(全或无式收缩);②不发生强直收缩;③对细胞外液ca2+的依赖性。
关于心肌收缩的特点,错误的是:
2楼:匿名用户
关于心肌收缩的特点,错误的是:(e)
a.同步收缩(全或无式收缩)
b.不发生强直收缩
c.对细胞外ca2+的依赖性
d.缺氧可使收缩力下降
e.交感神经兴奋可使收缩力下降
3楼:匿名用户
心肌收缩
不受大脑控制,每分钟收缩70次左右。而骨胳肌的收缩是有主动意识,也就是受大脑支配的行为。心肌一个收缩周期一般0.
8秒。在这0.8秒中心室收缩0.
3秒,休息0.5秒,心房收缩0.1秒,休息0.
7秒。这样看来心脏工作的时间远远小于休息的时间,所以虽然它一直在跳动,却没有疲劳。
简述心肌与骨骼肌相比其收缩性具有哪些特点
4楼:情缘魅族
骨骼肌收缩可以发生强直收缩,心肌收缩不能强直收缩造成这样的原因是肌肉的兴奋时间不同,骨骼肌动作电位快,可以在很短时间出现两次
动作电位,而在肌肉收缩还未完成的时候,第二次收缩已经开始,总体效应就是强直收缩;心肌的动作电位持续时间长,并且动作电位和肌肉收缩频率几乎是同步的,所以不可能造成在肌肉收缩的时,同时发生两次动作电位来加强这种收缩。
还有一个区别就是,心肌收缩是全心同步的,骨骼肌收缩只是局部的。
心肌有什么特点
5楼:春
由心肌细胞构成的一种肌肉组织。广义的心肌细胞包括组成窦房结、房内束、房室交界部、房室束(即希斯束)和浦肯野纤维等的特殊分化了的心肌细胞,以及一般的心房肌和心室肌工作细胞。
心肌 - 结构特征
在结构上具有以下几个特征:
1、心肌细胞为短柱状,一般只有一个细胞核,而骨骼肌纤维是多核细胞。心肌细胞之间有闰盘结构。该处细胞膜凹凸相嵌,并特殊分化形成桥粒,彼此紧密连接,但心肌细胞之间并无原生质的连续。
心肌组织过去曾被误认为是合胞体,电子显微镜的研究发现心肌细胞间有明显的隔膜,从而得到纠正。心肌的闰盘有利于细胞间的兴奋传递。这一方面由于该处结构对电流的阻抗较低,兴奋波易于通过;另方面又因该处呈间隙连接,内有15~20埃的嗜水小管,可允许钙离子等离子通透转运。
因此,正常的心房肌或心室肌细胞虽然彼此分开,但几乎同时兴奋而作同步收缩,大大提高了心肌收缩的效能,功能上体现了合胞体的特性,故常有“功能合胞体”之称。
2、心肌细胞的细胞核多位于细胞中部,形状似椭圆或似长方形,其长轴与肌原纤维的方向一致。肌原纤维绕核而行,核的两端富有肌浆,其中含有丰富的糖原颗粒和线粒体,以适应心肌持续性节律收缩活动的需要。从横断面来看,心肌细胞的直径比骨骼肌小,前者约为15微米,而后者则为100微米左右。
从纵断面来看,心肌细胞的肌节长度也比骨骼肌的肌节为短。
3、在电子显微镜下观察,也可看到心肌细胞的肌原纤维、横小管、肌质网、线粒体、糖原、脂肪等超微结构。但是心肌细胞与骨骼肌有所不同:心肌细胞的肌原纤维粗细差别很大,介于0.
2~2.3微米之间;同时,粗的肌原纤维与细的肌原纤维可相互移行,相邻者又彼此接近以致分界不清。心肌细胞的横小管位于z线水平,多种哺乳动物均有纵轴向伸出,管径约0.
2微米。而骨骼肌的横小管位于a-i带交界处,无纵轴向伸出,管径较大,约0.4微米。
心肌细胞的肌质网丛状居中间,侧终池不多,与横小管不广泛相贴。总之,心肌细胞与骨骼肌细胞在形态和功能上均各有其特点。
心肌 - 电生理特性
心肌心肌细胞的结构特征决定了心肌的生理特性。
1、自律性 动物的心脏在适宜的离子浓度、渗透压、酸碱度、温湿度以及充分的氧气和能源**等条件下,即使除去所有的神经,甚至在离体条件下,它仍然能够保持其固有的节律性收缩活动。即心肌本身具有自动节律性,简称自律性。绝大多数脊椎动物心肌的自律性是肌源性的,而不是神经源性的。
鸡胚在孵化后的第2天,尚无神经纤维长入,就已经出现自律性舒缩活动。心肌细胞经过组织培养过程而新生一代的心肌细胞也有自律性。这些都是有力的证据。
但在无脊椎动物,如有些节肢动物,其心肌的自律性是神经源性的,如鲎就是一例。但鲎在胚胎发育阶段,心搏自律性也是肌源性的,直到第28天神经发育完善以后,它的管状心脏的自律性搏动才变成神经源性的;切断神经后会使心搏停止。乙酰胆碱可使成年鲎心的搏动加速,而在胚胎期的鲎心则对乙酰胆碱无反应。
脊椎动物和无脊椎动物中的软体动物、被囊动物的心搏自律性属肌源性;环形动物、昆虫纲动物的心搏多属神经源性。蜜蜂、蝗虫、蟋蟀、蟑螂的心搏都受外部神经和激素的调节,有些昆虫如蚕的心似有几个起搏点,因此常发生逆行性搏动。在生理情况下,哺乳动物心脏的起搏传导传统中,自律性最高的是窦房结起搏细胞,其起搏节律在整体情况下,因受神经的调节而保持于每分钟70次左右(在成年人)的窦性心律水平。
房室交界部和浦肯野纤维的自律性次之,分别为40~55次/分钟及25~40次/分钟;心房肌和心室肌无自律性。
2、兴奋性及兴奋时的电位变化 心肌细胞兴奋时与骨骼肌和神经细胞一样,会产生动作电位,其兴奋性也经历一系列的时相性变化。但心肌的动作电位又有其特点。以心室肌为例,它从去极化到复极化的全过程,可分为0、1、2、3、4共5个时相,0期为去极化过程,其余4个期为复极化过程。
心室肌的复极化过程很长,一般可达300~350毫秒。并在2 期出现电位停滞于零线附近缓慢复极化的平台,这是心室肌动作电位区别于骨骼肌的显著特点。
心肌心肌细胞兴奋时会产生动作电位,这种电位变化与骨骼肌、神经细胞的动作电位大致相似。都可以表现为静息电位和兴奋时的动作电位。心肌细胞膜主要由类脂质和蛋白质分子构成。
静息时膜表面任何两点都是等电位的,但在膜内和膜外却存在着明显的电位差,用细胞内微电极记录到的静息电位约为90毫伏,膜外电位为正,膜内的为负。当心肌细胞受刺激而兴奋时,兴奋处膜电位发生反极化,即膜外电位暂时变负,膜内电位暂时变正,兴奋后又可恢复原来的极化状态,这叫再极化或复极化。心肌细胞动作电位与骨骼肌动作电位的主要区别是前者持续时间长,特别是再极化过程持续时间长,一般可达200~300毫秒,形成平台,心肌细胞动作电位的持续期大体相当心肌细胞的收缩期。
动作电位最先出现的锋电位可达+10到+30毫伏心肌动作电位的持续时程随心率的变化而改变;心率越快动作电位的持续期相应缩短,一般动作电位的持续期约为两次心搏间期的1/2。 心肌电生理心肌兴奋后膜内电位恢复到 -55毫伏段以前这时间内,任何强大的刺激都不会再引起心肌兴奋,这段时间叫绝对不应期,当膜内电位由-55毫伏恢复到-66毫伏左右时,如果第二个刺激足够强的话,可引起膜的部分去极化,但不能传播(局部兴奋),即不能引起可传播的动作电位,这段时间叫做有效不应期。从有效不应期之末到复极化基本完成 (膜内电位恢复到-80毫伏左右)的这段时间叫相对不应期,此时阈值以上的第二个刺激可引起动作电位。
相对不应期之后有一段时间心肌细胞的兴奋性超出正常水平,叫做超常期,此时阈下强度的刺激也能引起细胞的兴奋,产生动作电位。可见心肌动作电位可以精确地反映其兴奋的变化,持续的平台反映很长的不应期。心室肌特长的不应期有重要的生理学意义,它可以确保心搏有节律地工作而不受过多刺激的影响,不会像骨骼肌那样产生强直收缩从而导致心脏泵血功能的停止。
心房肌的绝对不应期短得多,仅仅150毫秒,从而常可产生较快的收缩频率,出现心房搏动或心房颤动。心房的相对不应期和超常期均为30~40毫秒,但它的有效不应期较长,约200~250毫秒。这一特性有利于心脏进行长期不疲劳的舒缩活动,而不致于像骨骼肌那样产生强直收缩而影响其射血功能。
心肌3、传导性 心肌细胞具有传导兴奋的特性。正常心脏的节律起搏点是窦房结,它所产生的自动节律性兴奋,可依次通过心脏的起搏传导系统,而先后传到心房肌和心室肌的工作细胞,使心房和心室依次产生节律性的收缩活动。心肌的兴奋在窦房结内传导的速度较慢,约0.
05米/秒;房内束的传导速度较快,为1.0~1.2米/秒;房室交界部的结区的传导速度最慢,仅有0.
02~0.05米/秒;房室束及其左右分枝的浦肯野纤维的传导速度最快,分别为1.2~2.
0及2.0~4.0米/秒。
心肌 - 机械生理特征
心肌收缩收缩性是心肌的一种机械特性。
收缩性 心脏的节律性同步收缩活动是心肌的又一重要生理特性。首先,由于心肌有较长的有效不应期和自动节律性;同时,心房肌和心室肌又各自作为功能合胞体,几乎是同时地产生整个心房或心室的同步性收缩,使心房或心室的内压快速增高,推动其中的血液流动,从而实现血液循环的生理功能。总之,心房和心室肌肉的节律性、顺序性、同步性收缩和舒张活动是心脏实现其泵血功能的基础。
心肌的收缩性与自律性、兴奋性、传导性共同决定着心脏的活动。
1.正常情况下,窦房结的自律性最高,它自动产生的兴奋依次激动心房肌、房室交界、房室束及其分支和心室肌,引起整个心脏兴奋和收缩。由于窦房结是正常心脏兴奋的发源地,又是统一整个心脏兴奋和收缩节律的中心,故称为心脏的正常起搏点。故由窦房结控制的心跳节律,称为窦性节律。
而正常情况下,窦房结以外的心脏自律组织因受窦房结兴奋的控制,不表现其自律性,故称为潜在起搏点。
窦房结对其它潜在起搏点的控制作用,一般是通过抢先占领和超速抑制两种方式实现的:
抢先占领:由于窦房结的自律性最高,4期自动除极的速度最快,所以在潜在起搏点4期自动除极到达阈电位水平之前,窦房结传导来的兴奋已促使整个心脏兴奋和收缩,故正常时潜在起博点自律性无法表现出来,在心脏内兴奋传导过程,它们仅起到传导兴奋的作用。
超速抑制:窦房结对于潜在起博点还可以产生一种直接的抑制,潜在起博点受到其自身固有自律性更高的节律性所激动时,其自身的节律性就受到抑制。这就是超速驱动抑制,简称超速抑制。
这种抑制的程度与两个起搏点之间自动兴奋的频率差呈平行关系,频率差越大,抑制效应越强;频率越小,抑制效应越弱。
2.影响自律性的因素4期自动除极是自律性形成的基础。因此,自律性的高低取决于4期自动除极的速度和最大舒张电位和阈电位的差距。
心肌(1)4期自动除极的速度:如果4期自动除极速度快,从最大舒张电位到阂电位所需的时间缩短,单位时间内产生兴奋的次数增多,自律性增高;反之,4期自动除极速度慢,从最大舒张电位到阈电位的时间延长,单位时间内产生兴奋的次数减少,则自律性降低。
(2)最大舒张电位大小:最大舒张电位绝对值小,离阈电位近,自动除极达阈电位的的间缩短,自律性增高;反之,最大舒张电位绝对值大,离阈电位远,自动除极达阈电位的的间延长,自律性降低。
(3)阈电位水平:阈电位水平下移(绝对值增大),与最大舒张电位的差距减小,自动除极达阈电位的时间缩短,自律性增高;反之阈电位水平上移(绝对值减小),与最大舒张电位的差距加大,自动除极达阈电位的时间延长,则自律性降低
心肌 - 病变
通常指**不能明确的心肌疾病称特发性心肌病,主要为扩张型心肌病、肥厚型心肌病、限制型心肌病和致心律失常型心肌病。其中以扩张型心肌病和肥厚型心肌病较为常见。
心肌兴奋性变化与收缩活动的关系,心肌兴奋后兴奋性有何变化?主要特点是什么?有何生理意义?
1楼 匿名用户 兴奋性的周期变化和心肌收缩的关系 1 不发生强直收缩 由于心肌细胞的有效不应期长,相当于整个收缩期和舒张早期。因此心肌不会发生像骨骼肌那样的完全强直收缩,保证心脏的舒张和收缩交替进行,有利于心室的充盈和射血,实现泵血功能。 2 期前收缩和代偿间歇 正常的心室搏动是由窦房结发出的节律性...
简述心肌兴奋性的周期性变化,心肌兴奋后兴奋性有何变化?主要特点是什么?有何生理意义?
1楼 匿名用户 心肌细胞兴奋性的周期性变化 心室肌细胞兴奋后,其兴奋性变化可分为以下几个时期 相对不应期 从有效不应期完毕,膜电位 60毫伏到 80毫伏的期间,用阈上刺激才能产生动作电位 扩布性兴奋 。这一段时间称为相对不应期。此期心肌兴奋性逐渐恢复,但仍低于正常。 有效不应期 从心肌细胞去极化开始...
幼儿记忆的特点之一是,幼儿记忆的特点有哪些
1楼 随风飘散 1 无意记忆占优势,有意记忆逐渐发展 2 机械记忆占优势,理解记忆逐渐发展 3 形象记忆占优势,语词记忆逐渐发展。 幼儿记忆的特点有哪些 2楼 霜叶红于二月化 记得少,忘得快 儿童记忆的范围和记忆保持的时间是随着年龄的增长而扩大和延长的。1岁左右的儿童记忆的范围很小,起初只能认妈妈 ...